A conductive biocomposite film (MWCNTs-PANIFAD) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(aniline) and poly(flavin adenine dinucleotide) co-polymer (PANIFAD) has been synthesized on gold and screen printed carbon electrodes by potentiostatic methods. The presence of MWCNTs in the MWCNTs-PANIFAD biocomposite film enhances the surface coverage concentration (Gamma) of PANIFAD and increases the electron transfer rate constant (k(s)) to 89%. Electrochemical quartz crystal microbalance studies reveal the enhancements in the functional properties of MWCNTs and PANIFAD present in MWCNTs-PANIFAD biocomposite film. Surface morphology of the biocomposite film has been studied using scanning electron microscopy and atomic force microscopy. The surface morphology results reveal that PANIFAD incorporated on MWCNTs. The MWCNTs-PANIFAD biocomposite film exhibits promising enhanced electrocatalytic activity towards the oxidation of p-acetamidophenol. The cyclic voltammetry has been used for the measurement of electroanalytical properties of p-acetamidophenol by means of PANIFAD, MWCNTs and MWCNTs-PANIFAD biocomposite film modified gold electrodes. The sensitivity value of MWCNTs-PANIFAD film (88.5 mA mM(-1)cm(-2)) is higher than the values which are obtained for PANIFAD (28.7 mA mM(-1)cm(-2)) and MWCNTs films (60.7 mA mM(-1)cm(-2)). Finally, the flow injection analysis (FIA) has been used for the amperometric detection of p-acetamidophenol at MWCNTs-PANIFAD film modified screen printed carbon electrode. The sensitivity value of MWCNTs-PANIFAD film (3.3 mA mM(-1)cm(-2)) in FIA is also higher than the value obtained for MWCNTs film (1.1 mA mM(-1)cm(-2)).

影响因子
4.162
论文下载
作者

Ying Li,Yogeswaran Umasankar,Shen-Ming Chen.

期刊

Talanta,79,2,486-492(2009)

年份