As an important component of Atomic Force Microscope (AFM), piezo-scanner exhibits some undesired nonlinear characteristics, among which the inherent hysteresis largely decreases the scanning rate and resolution of AFM. To alleviate this problem, an image-based approach is proposed in this paper to model and then compensate for the hysteresis behavior of the piezo-scanner. Specifically, some scanning images over calibration grating are utilized to identify the parameters of the classical Preisach model (CPM) of hysteresis. Based on the obtained model, an inversion-based technique is adopted to design a compensator for the hysteresis of piezo-scanner. The proposed algorithm presents such advantages of low cost and little complexity since no nano-sensor is required to collect identification data. Some simulation results are included to demonstrate the performance of the proposed strategy.

论文下载
作者

Yudong Zhang,Yongchun Fang,Xianwei Zhou,Xiaokun Dong

期刊

in Proceedings of IEEE 7th Conference on Nanotechnology

年份