This paper focuses on the gas sensing properties of the mixed-potential-type NO2 sensor based on yttria stabilized zirconia (YSZ) and NiO electrode. The sensing performance of the sensor was improved by modifying the three-phase boundary (TPB). Hydrofluoric acid with different concentrations (10%, 20% and 40%) was used to corrode YSZ substrate to obtain large superficial area of TPB. The scanning electron microscope and atomic force microscopic images showed that the 40% HF could form the largest superficial area at the same corroding time (3 h). The sensitivity of the sensor using the YSZ plate corroded with 40% hydrofluoric acid to 20–500 ppm NO2 was 76 mV/decade at 850 °C, which was the largest among the examined HF concentrations. It was also seen that the sensor showed a good selectivity and speedy response kinetics to NO2. On the basis of the measurements of anodic and cathodic polarization curves, as well as the complex impedance of the device, the sensing mechanism was confirmed to involve a mixed potential at the oxide sensing electrode.

影响因子
7.460
论文下载
作者

Xishuang Liang,Shiqi Yang,Jianguo Li,Han Zhang,Quan Diao,Wan Zhao,Geyu Lu.

期刊

Sensors and Actuators B:Chemical,158,1,1-8(2011)

年份