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Abstract
A heterodyne interferometric ellipsometer, with no moving parts and a
transverse Zeeman laser, is demonstrated. The modified Mach–Zehnder
interferometer characterized as a separate frequency and common-path
configuration is designed and theoretically analyzed. The experimental data
show a fluctuation mainly resulting from the frequency mixing error which
is caused by the imperfection of polarizing beam splitters (PBS), the
elliptical polarization and non-orthogonality of light beams. The producing
mechanism of the frequency mixing error and its influence on measurement
are analyzed with the Jones matrix method; the calculation indicates that it
results in an error up to several nanometres in the thickness measurement of
thin films. The non-orthogonality has no contribution to the phase difference
error when it is relatively small; the elliptical polarization and the
imperfection of PBS have a major effect on the error.

Keywords: ellipsometry, heterodyne interferometer, films measurement,
frequency mixing error

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The wide range of applications of thin films with a thickness of
nanometres in advanced technologies is becoming increasingly
popular as new generations of microelectronics, optical and
magnetic devices and materials science and technology are
developed. The dynamics of the growth of thin and ultra-
thin films and their optical constants are of crucial importance
to their performance [1]. Ellipsometers today are making
progress in automation in different ways, and are widely used
to measure the optical properties of thin films. However, they
are still not suitable for the study of a very fast surface process
with millisecond or even microsecond resolution, and some
kinds of errors are inherent due to the mechanical rotation of
optical components [2].

Heterodyne interferometers using a two-frequency laser
have been developed for a variety of applications which
offer sub-nanometre accuracy, almost unlimited resolution

and high anti-interference performance. To overcome the
limitations of conventional ellipsometers, many researchers
have been intrigued to combine heterodyne interferometry
with ellipsometry. In principle, linearly polarized light in
the measurement arm of an interferometer is twice reflected
from a film, and then recombines at a beam splitter with light
from the reference arm. The composite light is spatially
separated into p- and s-polarized components before being
converted to electrical signals. Hazebroke et al produced two
heterodyne signals by moving a corner-cube reflector in the
reference arm at constant speed [3, 4], and the ellipsometric
parameters were obtained from the amplitudes and phase
difference. However, the moving reflector driven by an
electromechanical device led to some problems [5]. A possible
solution to these problems proposed by Wind et al was to
use a Zeeman laser to generate a beat frequency at 1 MHz
[5]. Consequently the ellipsometric parameters showed a
fluctuation up to several degrees which arose from frequency
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Figure 1. Schematic of the optical configuration. L: Zeeman laser;
PBS: polarized beam splitters; HWP: half-wave plate; M: mirrors;
BS: beam splitters; S: film sample; D: detector.

mixing error [6, 7]. Two coupled lasers controlled by an
external unit were employed to avoid the error [7], as well
as a new design of the interferometric ellipsometer using a
wavelength-modulated laser diode source [8]. But no further
research on the frequency mixing error of interferometric
ellipsometers has been reported.

Even though heterodyne interferometers offer resolution
up to sub-nanometres, their accuracy is limited by the
nonlinear frequency mixing error [9]. The mechanism
by which it is created is important for compensating and
eliminating the error. Many reports have discussed the error
[10–12]. However, they all concentrated on the systems of
dynamic displacement measurement using Michelson’s setup,
and several items of error were only discussed separately. In
this paper, a new configuration of reflection ellipsometry was
introduced. In terms of the extinction ratios of PBS, elliptical
polarization and the non-orthogonality of the light beam,
the frequency mixing error in heterodyne interferometric
ellipsometers was calculated to explain the fluctuation existing
in the experimental results.

Although ellipsometry has been applied to absorbing and
anisotropic thin films [2], for simplicity this paper will only
focus on non-absorbing and isotropic thin films.

2. Theory and experimental setup

Figure 1 shows a modified Mach–Zehnder interferometer.
The transverse Zeeman laser emits two orthogonally linearly
polarized beams with a slight angular frequency difference,
�ω = ω2 − ω1. A polarizing beam splitter (PBS1) splits
the light into two beams, one for reference and the other
for measurement. The transmitted beam at the PBS1 passes
through a half-wave plate (HWP), which is set with its fast
axis at π/8 with respect to the X-axis. The polarization of
measurement light rotates 45◦, so the p- and s-components
of the measurement beam with approximately equal intensity
are directed towards a film sample via a neutral splitter (BS1)
and redirected by a retro-mirror. For the same reason, the
HWP in the reference arm is also set with its fast axis at
3π/8 with respect to the X-axis. The p- and s-components
of the measurement beam recombine at BS2 with the related
components of the reference beam, respectively. After the

second polarizing splitter (PBS2) followed by two detectors,
the p- and s-components are separated and two sinusoidal
signals with a beat frequency �ω are generated.

The light emitted from the Zeeman laser could be
represented as

E =
(

1
0

)
exp [i (ω2 · t + α2)] +

(
0
1

)
exp[i(ω1 · t + α1)] (1)

where α1 and α2 are the initial phases. By using the Jones
matrix method, the response of the optical system can be easily
described. The electric field components of the beams incident
on the photodetectors Dp and Ds are, respectively,

Ep = PR · [BT · M · H(3π/8) · PR

+ BR · BT · S · M · S · BR · H(π/8) · PT] · E

Es = PT · [BT · M · H(3π/8) · PR

+ BR · BT · S · M · S · BR · H(π/8) · PT] · E (2)

where the subscripts R and T mean reflection and transmission,
P, H, B, M and S represent the Jones matrixes of the polarizing
beam splitters, half-wave plates, beam splitters, mirrors and
film sample, respectively,

PR =
(

0 0
0 1

)
PT =

(
1 0
0 0

)

BR = BT = 1

2

(
1 0
0 1

)
S =

(
rS 0
0 rP

)

M =
(

1 0
0 −1

)
H(π/8) = i√

2

(−1 1
1 1

)
(3)

H(3π/8) = i√
2

(
1 1
1 −1

)

with

rS = |rS| · exp(iφS) rP = |rP| · exp(iφP). (4)

Equation (4) demonstrates the reflection coefficients of the
sample for the p- and s-components, respectively.

Substitution of equations (1), (3) and (4) into equation (2)
gives

ES ∝ − 1
4 r2

S · exp [i (ω1t + α1)] + exp [i (ω2t + α2)]
(5)

EP ∝ − 1
4 r2

P · exp [i (ω1t + α1)] + exp [i (ω2t + α2)] .

Thus the oscillating terms of intensity signals are obtained:

IS ∝ 1
4 |rS|2 · cos(�ω · t − 2φS + �α)

(6)
IP ∝ 1

4 |rP|2 · cos(�ω · t − 2φP + �α).

The amplitude ratio between IS and IP yields tan(ψ), and the
phase difference of the ac signals is equal to 2�, i.e,

� = φP − φS tan(ψ) = |ρ| = |rP|/|rS|. (7)

Theoretically speaking, the setup has the advantage of being
immune to environmental fluctuation because of the complete
common-path configuration.
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Figure 2. Schematic of the air–film–substrate system (λ =
632.8 nm, n0 = 1.00, n2 = 1.515, n1 = 2.0, d = 120.1 nm, θ 0 = 45◦).

Table 1. Experimental data for the single layer ITO.

No. |ρ | � (deg) n1 d (nm)

1 0.555 158.7 2.00 120.1
2 0.549 158.2 2.01 121.2
3 0.563 160.1 1.98 118.7
4 0.524 154.9 2.05 124.1
5 0.543 157.6 2.00 122.0
6 0.519 153.5 2.10 123.5
7 0.564 158.7 2.03 118.2
8 0.552 158.7 1.99 120.7
9 0.520 154.0 2.08 123.9

10 0.561 159.8 1.98 119.2

3. Experimental results

The film sample is ITO (indium tin oxide) on a glass substrate,
as figure 2 shows.

A scanning probe microscope (CSPM-4000 produced
by Benyuan Co, Ltd, vertical resolution: 0.1 nm) with a
silicon cantilever was employed to calibrate the film thickness.
The measurement results of heterodyne interferometric
ellipsometry are demonstrated in table 1.

Obviously, the fluctuation existing in the ellipsometric
parameters results in an error up to 5 nm in film thickness
measurement. The errors mainly introduced by frequency-
mixing are discussed in detail below.

4. Analysis of frequency mixing error

The derivations of section 2 are under ideal conditions,
implying that only one frequency occurs in each arm. In
practice, various kinds of factors, such as the elliptical
polarization and non-orthogonality of light beams, the
imperfection and misalignment of the polarized components,
together cause frequency mixing in both arms [9], resulting in
a nonlinear error in heterodyne interferometers which require
nanometre precision.

The ideal output of the transverse Zeeman laser, as
figure 3(a) shows, could be described as equation (1). Because
of elliptical polarization and non-orthogonality, the non-ideal
light emitted from the transverse Zeeman laser could be
demonstrated as figure 3(b). Similar to equation (1), it will be
written as

x

y
EP

ES

x

y θ
EP

ES

(a) (b)

Figure 3. (a) Ideal output of the transverse Zeeman laser;
(b) schematic of elliptical polarization.

E =
(

Ex

Ey

)
=

(
1

η1e−i π
2

)
exp[i(ω2t + α2)]

+

(
sin θ − iη2 cos θ

cos θ + iη2 sin θ

)
exp[i(ω1t + α1)]. (8)

The η1 and η2 represent the ellipticity of the two modes
respectively, and the θ represents the non-orthogonality. In
many good metrology grade laser sources, a non-orthogonality
of up to 3◦ has been reported and one finds that the worst case
value for η is around 0.05 [11].

Because of imperfection and misalignment, the Jones
matrixes of the PBS1 and PBS2 are also modified as

P 1
T =

(
1 0
0 γ

)
, P 1

R =
(

γ 0
0 1

)

P 2
T =

(
1 0
0 κ

)
, P 2

R =
(

κ 0
0 1

) (9)

where γ and κ represent the extinction ratios of PBS1 and
PBS2, respectively.

Substitution of equations (8) and (9) into equation (2)
gives the field vector EP on the photodetector Dp, as equation
(10) demonstrates:

EP =
(

Ex
P

E
y

P

)
∝

(
κ
(
γ − 1

4 r2
S

) − iη1κ
(
1 + 1

4γ · r2
S

)
−γ − 1

4 r2
P − iη1

(
1 − 1

4γ · r2
P

)
)

× exp[i(ω2t + α2)]

+

(
(sin θ − iη2 cos θ) · κ · (

γ − 1
4 r2

S

)
(sin θ − iη2 cos θ) · (−γ − 1

4 r2
P

)
+ (cos θ + iη2 sin θ) · κ · (

1 + 1
4γ · r2

S

)
+ (cos θ + iη2 sin θ) · (

1 − 1
4γ · r2

P

)
)

× exp[i(ω1t + α1)]. (10)

Because η1, η2, γ , θ and κ are very small, neglecting the
second and higher order terms of η1, η2, γ , θ and κ in the field
vector expression gives equation (11):

EP =
(

Ex
P

E
y

P

)
∝

( −κ · 1
4 r2

S

−γ − 1
4 r2

P − iη1

)
exp[i(ω2t + α2)]

+

(
κ · cos θ

cos θ − 1
4 r2

P · (sin θ + γ · cos θ) + iη2 · cos θ · 1
4 r2

P

)
× exp[i(ω1t + α1)]. (11)

Then the normalized intensity signal on photodetector Dp may
be written as follows:
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IP = I x
P + I

y

P = 1
4κ2 · |rS|2 cos θ · cos (�ωt + �α − 2φS)

+ A1A2 · cos(�ωt + �α + φ1 − φ2) (12)

where Ai and φi are given by

A1 · eiφ1 = −γ − 1
4 r2

P − iη1

A2 · eiφ2 = cos θ − 1
4 r2

P · (sin θ + γ · cos θ)

+ iη2 · cos θ · 1
4 r2

P . (13)

Similarly, the intensity signal on Ds can be derived:

IS = I x
S + I

y

S = A3 · A4 cos (�ωt + �α + φ3 − φ4)

+ 1
4κ2 · ∣∣r2

P

∣∣ cos θ · cos(�ωt + �α − 2φP) (14)

and

A3 · eiφ3 = γ − 1
4 r2

S − iη1

A4 · eiφ4 = cos θ − 1
4 r2

S · (sin θ − γ cos θ) + iη2 · cos θ · 1
4 r2

S .

(15)

From equations (12)–(15), it is clear that I x
P and I

y

S are much
less than I

y

P and I x
S , respectively. After omitting I x

P and I
y

S ,
the measuring error of the ellipsometric parameters may be
derived from equations (7), (12) and (14):

δ|ρ| =
√

A1A2

A3A4
− |rP|

|rS|
(16)

δ� = [(φ1 − φ2) − (φ3 − φ4)]

2
− �.

Obviously, the errors vary with rP and rS. According to
equations (12) and (14), the intensity signals are just related
to κ2, so the PBS2 only produces higher order error.

5. Discussion

To assume η1 = η2 = 0 and θ = 0◦, and substitute the
specification of the sample into equation (16), the ellipsometric
parameter errors produced by the imperfection of PBS1 are
demonstrated in figure 4. The ellipsometric parameter errors
are approximately linear to the imperfection of PBS1 while γ

has a magnitude of 10−4. γ of about 3 × 10−4 will produce

δ� ≈ 0.4◦ δ|ρ|/|ρ| ≈ 1% (17)

Substitution of equation (17) into the fundamental
ellipsometry equations [2] gives an error of thickness
measurement of about 1 nm.

To assume γ = 0 and η1 = η2 = η, figures 5 and 6
describe the rule between the errors and ellipticity η and non-
orthogonality θ . Taking into account the items γ , η and
θ synchronously, the errors of the ellipsometric parameters
are calculated in table 2. Figure 5 and table 2 suggest that
the ellipticity η approximately alone is responsible for the
nonlinear phase difference error when the non-orthogonality
θ is relatively small, but the non-orthogonality does affect the
error of amplitude ratio, according to figure 6 and table 2.
In sum the ellipticity η has more important contributions
than non-orthogonality to the errors of the ellipsometric
parameters.

The ellipsometric parameter errors are also
approximately linear to the η while it is very small. In
figures 5 and 6, η, θ of about 2 × 10−3 and 6◦, respectively,
will produce

δ� ≈ 1.5◦ δ|ρ|/|ρ| ≈ 4% (18)

(a)

(b)

Figure 4. (a) Amplitude ratio error versus imperfection of PBS1;
(b) phase difference error versus imperfection of PBS1.

Figure 5. Phase difference error versus ellipticity η and
non-orthogonality θ .

Similarly, now the error of the thickness measurement is about
4 nm, according to the fundamental ellipsometry equations.
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Figure 6. Amplitude ratio error versus ellipticity η and
non-orthogonality θ .

Table 2. Effect of the extinction ratio, ellipticity and
non-orthogonality on the ellipsometric parameter error.

Extinction Ellipticity Non-orthogonality δ� δ|ρ |/|ρ|
ratio γ η θ (deg) (deg) (%)

6 × 10−4 0.002 3 2.3 −2.2
3 × 10−4 0.001 1 1.1 −1.2
10−4 0.0005 1 0.5 −0.75
0.0005 0.0005 1 1.0 0.52
0.0005 0.0005 3 1.0 0.59

Comparing the figures 4–6 with table 2, one can find that
the total errors produced by γ , η and θ synchronously are not
equal to the sum of the individuals. Namely, their influence
on measurement accuracy is cross-correlated, and to discuss
the influence separately does not make sense.

Because the PBS2 only produces higher order error,
comparatively speaking it is less important.

6. Conclusion

A heterodyne interferometric ellipsometer using a transverse
Zeeman laser was presented. Without any rotational
mechanical parts, the measurement system is expected to
operate at higher speed and stability. The complete common-
path configuration is helpful to improve the anti-interference
performance; so the system is more applicable to in situ and
real time measurement than conventional ellipsometers. The
experimental results show a fluctuation of about 5 nm in film
thickness measurement.

A full analysis based on the Jones matrix method was
carried out on the nonlinear frequency mixing error. The
imperfection and misalignment of PBS, elliptical polarization
and non-orthogonality of the light beam together give rise

to an error of up to several nanometres in film thickness
measurement.

In fact γ , ηi and θ are not constants, they vary a
little with environmental parameters [13]. Therefore, the
frequency mixing error always appears to be a quasi-periodical
fluctuation. Although the drift of the errors was not studied in
this paper, the results are expected to be useful when artificial
intelligence, such as neural network and genetic algorithms, is
applied to compensating and eliminating the error [14].
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