文章编号:1674-2869(2009)03-0060-04

射频等离子体制备类金刚石薄膜及其表征

谢 鹏¹,汪建华^{1,2},王传新^{1,2},王升高^{1,2},满卫东^{1,2},熊礼威^{1,2} (1. 武汉工程大学材料学院,湖北 武汉 430074:

2. 湖北省等离子体化学与新材料重点实验室,湖北 武汉 430074)

摘 要:采用射频等离子体技术,以 CH4和 H2为反应气体,在单晶硅片和载玻玻璃片上成功制备出了高质量 的类金刚石薄膜.采用扫描电镜、原子力显微镜、Raman 光谱、红外光谱、显微硬度计表征了类金刚石薄膜的 表面形貌、微观结构、光学性能和复合硬度.结果表明,制备出的类金刚石薄膜表面十分平整光滑,表面粗糙度 极低,平均粗糙度 R_a 为 0.492 nm;薄膜中含有 sp²,sp³杂化键,具有典型的类金刚石结构特征;光学透过率比 较高,薄膜的复合硬度可以高达 507.3 kgf/cm².

1

关键词:射频等离子体;类金刚石薄膜;粗糙度;拉曼光谱;显微硬度 中图分类号:TB43 文献标识码:A

0 引 言

类金刚石 (Diamond-like Carbon, DLC) 薄膜 是由 sp²杂化和 sp³杂化碳组成的亚稳态无定形 碳,具有较高的硬度、高的光学(特别是红外和微 波频段)透过率、良好的机械和摩擦性能^[1].由于 它具有如此优异的性能,因此在机械、电子、光学、 声学、计算机等很多领域具有较好的应用前 景^[25].

目前为止,DLC的制备方法主要分为电化学 法^[6-7],物理气相沉积法^[7-10]和化学气相沉积 法^[11-13]三大类.其中电化学方法技术还不够完善, 制备的类金刚石薄膜性能较差,难以达到应用要 求;工业上采用较多的是物理气相沉积法,但该方 法对设备和环境的要求很高;化学气相沉积法对 设备的要求不高,其中比较常用的方法就是射频 等离子体增强化学气相沉积法(RF-PECVD).它 具有沉积速率高、沉积温度低、薄膜质量好、设备 简单等特点,已成为制备 DLC 薄膜的常用方法之 一

本文用自行设计的射频辉光放电等离子体化 学气相沉积设备,沉积出了类金刚石薄膜,分析了 薄膜的微观结构和表面形貌,考察了薄膜的硬度 和光学透过率.

实验部分

1.1 薄膜的制备

实验采用自行研制的 RF-PECVD 设备,图 1 为该系统的原理简图.该设备采用平板式电极,两 极板平行放置,间距可以在 0~130 mm 内自由调 节,上下极板的面积比为 16. 阳极(上极板)接地, 阴极(下极板)连接射频源(13.56 MHz),同时加 屏蔽及冷却水,射频电源的最大输出功率为 500 W.反应气体采用 H₂和 CH₄,气体纯度均大于 99.9%,气体流量由质量流量计进行控制,本底真 空和工作气压都由 ZDF 5210 复合真空计测量.

Fig. 1 Schematic diagram of the RF system 选用 P(100)的单晶硅和普通的载玻片作为基

收稿日期:2008-07-11

基金项目:国家自然科学基金(50572075);湖北省教育厅 2004 年创新团队项目;湖北省教育厅 Q20081505 项目. 作者简介:谢 鹏(1984-),男,湖北武汉人,硕士研究生.研究方向:低温等离子体与新材料技术. 指导老师:汪建华,男,教授,博士生导师.研究方向:低温等离子体与新材料技术.

体,基片表面的净化对成膜质量尤其对膜层的附 着力影响很大,因此基片在放入真空腔体以前,先 用体积分数为 10%~20%的 NaOH 溶液浸泡 20~ 30 min,再用去离子水清洗,然后用丙酮和无水乙 醇分别超声清洗 15~20 min,用干燥的空气吹干. DLC薄膜制备条件为:CH4和 H2的流量百分比为 30%~80%,沉积气压为 2~3 Pa,射频功率 80~ 120 W,极板间距为 6 cm,沉积时间 5 h.

1.2 薄膜的测试

采用日本电子JSM-5510LV型扫描电子显微 镜和 CSPM4000 原子力显微镜对薄膜的表面形貌 和粗糙度进行表征;用英国 Renishaw 公司生产的 RM-1000 型激光拉曼光谱仪分析薄膜的结构;用 Impact420 型傅立叶红外透射光谱仪对沉积薄膜 后的玻璃样品进行透光性能测试;用上海尚材试 验机有限公司生产的 DHV-1000 显微硬度计测量 薄膜的硬度.

2 结果与讨论

2.1 DLC 膜的表面形貌分析

图 2 是在射频功率为 120 W,CH4和 H2的流 量百分比为 60 %,沉积气压为 2 Pa 下得到的类金 刚石薄膜的 SEM 表面形貌,从图 4 中可以看出, DLC 薄膜的表面非常平整,而且晶粒非常细小.

图 2 类金刚石薄膜的 SEM 照片

Fig. 2 SEM micrograph of the DLC film

为了更进一步的表征 DLC 薄膜的表面形貌, 采用原子力显微镜进行观察.图 3 为 DLC 薄膜 10 µm ×10 µm 的 AFM 形貌图,(a)二维形貌图, (b)三维形貌图.从图 5 中可以看出薄膜的表面是 由大量的非晶碳簇束组成,薄膜的表面均匀致密, 有明显的颗粒状的碳粒子.用原子力显微镜配套 的分析软件进行面粗糙度分析,得到薄膜表面的 平均粗糙度 $R_a = 0.492$ nm,高度均方根 $R_q =$ 0.853 nm,微观不平度十点高度 $R_z = 12.7$ nm,轮 廓最大高度 $R_y = 13.4$ nm.进行粒度分析得到粒 子的平均粒径为 61.7 nm.因此,可以看出,射频等

离子体法制备的类金刚石薄膜表面十分平整光 滑,具有极低的粗糙度.

图 3 类金刚石薄膜的 AFM 表面形貌 Fig. 3 AFM images of the DLC film

2.2 DLC 膜的拉曼光谱分析

激光 Raman 光谱是分析 DLC 膜的一种有效 方法. 类金刚石薄膜内部含有金刚石结构的 sp³杂 化键和石墨结构的 sp²杂化键,这些键呈短程有序 排列,一般由 sp²键连接成单个的或者破碎的环, 构成类似于石墨层状结构的小" 聚束". 在这些聚 束的边界存在无规则排列的具有碳-碳电子轨道的 盘杂化结构. 但从整体结构来看,类金刚石碳膜仍 然表现为典型的非晶结构^[14]. 金刚石由四面体结 构的 sp³键组成,其 Raman 谱表现为在1 332 cm⁻¹ 处的单一尖峰;高度取向的结晶石墨由平面三角 结构的 sp²键组成,其 Raman 表现为 1 580 cm⁻¹ 处的单一尖峰(通常称为 G峰);多晶或微晶石墨 的 Raman 谱会在 1 350 cm⁻¹处出现一个附加的峰 (通常称为 D 峰)^[15].

图 4 是在射频功率为 80 W, CH4和 H2的流量 百分比为 50 %, 沉积气压为 2 Pa 下得到的类金刚 石薄膜的 Raman 图谱及其 Gaussian 拟合曲线.表 1 是 Raman 图谱高斯拟合的数据. 从图 4 中可以 看出,曲线1上在1580 cm⁻¹附近有一个很强的 宽峰,同时在1350 cm⁻¹附近有一个弱肩峰,呈现 出典型的 DLC 薄膜的 Raman 光谱特征. 曲线 2 是 Raman 光谱的高斯拟合曲线,它拟合出了2个峰, 其中心为 1 328.4 cm⁻¹ 的 D 峰和中心为 1 516.5 cm⁻¹的 G峰,相对与特征峰值来说 D 峰 和 G峰都向低波数段方向偏移了. G峰移向低波 数有两种可能的原因: sp²键角紊乱程度增加和 sp³键结构含量的增加,而G峰宽化是由石墨相无 序排列造成的^[14]. 另一方面, D 峰的出现是由于石 墨结构中 sp²键角的紊乱,包括与 sp³键相连的原 子,也与由 sp²键组成的类石墨微区中长程有序的 破坏有关.对 Raman 谱的 D 峰、G 峰进行面积积 分计算出对应的峰强度比值 Ib/ IG,可以定性的表 示 sp³杂化碳原子的含量^[16], I_D/ I_G = 0.889 8 表明 薄膜中金刚石成分含量较高.

62

图 4 DLC 薄膜 Raman 图谱及其 Gaussian 拟合

Fig. 4 Raman spectrum and its decomposition spectra of the DLC film

表 1 拟合的 Raman 谱数据

Table 1	Decomposition d	ata of Raman	spectrum
---------	-----------------	--------------	----------

Raman 谱拟合峰	面积	中心	宽度	高度	I _D / I _G
D峰	1.143 3 ×10 ⁶	1 328.4	247.33	3 688.1	0 000 0
G峰	1.284 8 ×10 ⁶	1 516.5	161.83	6 334.8	0.8898

2.3 DLC **膜的光学性能**

7

采用傅立叶红外光谱仪对沉积类金刚石薄膜 前后载玻片的透光性能进行了表征,图 5 为沉积 薄膜前后玻璃在 4 000 cm⁻¹到 500 cm⁻¹波数范围 内的透光性能比较,沉积的条件:射频功率120 W, CH₄和 H₂的流量百分比为 50%,沉积气压为 2.5 Pa. 从图 5 中可以看出,沉积 DLC 薄膜后玻璃 整体的透光性能有所降低,但降低后其透光性能 仍然较高,以 4 000 cm⁻¹处的透过性能为例,玻璃 标准样的透过率为 92%,沉积 DLC 薄膜后透过率 变为 82%左右,这样的透过性能仍然能够达到基 本的光学应用要求.

2.4 DLC 膜的显微硬度分析

硬度是指一种材料受着另一种受力的更硬的 物体压力所呈现的阻力大小.显微硬度是通过光 学放大,测出在一定试验力下由金刚石钻角椎体 压头压入被测物体后所残留的压痕的对角线长度 来求出被测物的硬度.显微硬度计在测量薄膜的 硬度时,当压头在薄膜表面压痕的深度和膜厚比 值超过允许的临界值,受薄膜、薄膜与基底界面、 基底共同影响,往往测得的是薄膜的复合硬度^[17].

在实验中,采用上海尚材试验机有限公司生 产的数字显微硬度计,型号为 DHV-1000,施加的 载荷为 9.8 N,时间为 15 s.基片为硅片,其维氏硬 度为 101.8 kgf/cm².沉积 DLC 薄膜的条件为:射 频功率 100 W,CH4和 H2的流量百分比为 60%, 沉积气压为 2 Pa.选择不同区域打 3 个点测试其 复合硬度,取平均值.

表 2 DLC 薄膜的复合硬度

Table 2 C	omposite har	dness of	the Si/D	LC
压头打点编号	1	2	3	平均值
复合硬度/(kgf ·cr	m^{-2}) 487.3	530.5	504.2	507.3

3 结 语

a. 使用射频等离子体法以 CH4和 H2为反应 气体,在单晶硅片和载玻片上成功制备出了高质 量的类金刚石薄膜.

b. 所制备出的 DLC 薄膜用 SEM 和 AFM 分 析发现,薄膜表面非常平整光滑,表面粗糙度极 低,平均粗糙度 *R_a* = 0.492 nm.

c. 对 DLC 薄膜进行 Raman 光谱 Gaussian 拟 合分析,发现光谱中 D 峰和 G 峰的位置及宽度都 发生了变化,峰强度比值 $I_{\rm b}/I_{\rm G} = 0.889.8$,薄膜中 sp^{3} 杂化碳含量较高.

d. 制备出来的 DLC 薄膜的光学透过性较好, 复合硬度也比较高,达到了 507.3 kgf/cm².

参考文献:

- [1] 李振军,徐洮,李红轩,等. 类金刚石薄膜的摩擦学特
 性及磨损机制研究进展[J].材料科学与工程学报,
 2004,22(5):774-777.
- [2] Erdemir A. Genesis of superlow friction and wear in diamond-like carbon films[J]. Tribology International, 2004,37: 1005-1012.
- [3] Adhikari S, Omer A M, Adhikary S, et al. Diamondlike carbon thin films grown by large-area surfacewave mode microwave plasma CVD: Effects of stage distance to microwave window [J]. Diamond and Related Materials, 2006, 15: 913-916.
- [4] Dearnaley G,James H. Biomedical applications of diamond-like carbon (DLC) coatings: A review [J]. Surface and Coating Technology, 2005, 200: 2518-2524.
- [5] 张敏,程发良,姚海军. 类金刚石膜的性质和制备及应用[J]. 表面技术,2006,35(2):4-6.
- [6] 黄丽娜,江河清,张治军,等. 乙腈中电化学法制备类
 金刚石薄膜[J]. 化学研究,2004,15(3):9-11.
- [7] 杜景永,张贵锋,李国卿,等. 不锈钢上液相电沉积类金刚石薄膜[J]. 电化学,2007,13(1):58-61.
- [8] 代明江,林松盛,侯惠军,等. 用离子源技术制备类金刚石膜研究[J]. 中国表面工程,2005,18(5):16-19.
- [9] 白秀琴,李建. 碳离子束注入辅助蒸发低温沉积 DLC薄膜研究[J]. 润滑与密封,2007,32(6):68.

- [10] Wu J B ,Chang J ,Li M Y,et al. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition [J]. Thin Solid Films ,2007 ,516 (2-4) : 243-247.
- [11] 楚信谱,苟伟,李国卿,等.射频辉光放电自偏压对 类金刚石碳膜结构和性能的影响[J].真空科学与 技术学报,2006,26:143-145.
- [12] Sakamoto Y, Takaya M. Growth of carbon nitride using microwave plasma CVD [J]. Thin Solid Films, 2005, 475: 198-201.
- [13] Ma GJ ,Zhang H F ,Wu H C ,et al. Preparation of diamond-like carbon by PBIFenhanced microwave ECR chemical vapor deposition [J]. Surface and Coatings Technology ,2007 ,201 :6623-6626.
- [14] 周顺,严一心. 脉冲真空电弧离子镀在不锈钢上沉 积类金刚石薄膜的研究[J]. 真空,2005,42(4):15-18.
- [15] 黄卫东,詹如娟.表面波等离子体沉积类金刚石膜
 结构的 Raman 光谱和 XPS 分析[J].光谱学与光谱
 分析,2003,23(3):512-514.
- [16] Shroder R E, Nemanich R J, Matsuki M, et al. Raman scattering from sp² carbon clusters [J]. Physical Review B,1992,46(11): 7169-7174.
- [17] 赵之明,李合琴,顾金宝,等.射频磁控溅射制备类
 金刚石薄膜的特性[J].真空与低温,2006,12(4):
 215-218.

Preparation and characteristics of diamond-like carbon films prepared by RF-PECVD

XIE Peng¹, WANG Jian-hua^{1,2}, WANG Chuan-xin^{1,2}, WANG Sheng-gao^{1,2}, MAN Wei-dong^{1,2}, XIONG Li-wei^{1,2}

(1. Wuhan Institute of Technology, School of Materials Science and Engineering, Wuhan 430074, China;

2. Provincial Key Laboratory of Plasma Chemistry and Advanced Materials , Wuhan 430074 , China)

Abstract : Diamond-like carbon (DLC) films have been successfully grown on silicon wafer and glass slide substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) in a H_2/CH_4 plasma. Surface morphology, microstructure, optical properties and hardness of the films were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Raman Spectroscopy (Raman), Infrared Spectrum (IR) and micro-hardness instrument. The result shows that the surface of the film is very flat and smooth and surface average roughness is 0.429 nm. The film has sp², sp³ bond and typical hydrogenated diamond-like characteristics. The film has high optical transparency; its hardness is up to 507.3 kgf/cm².

Key words: RF-PECVD; diamond-like carbon films; roughness; Raman spectroscopy; micro-hardness 本文编辑:萧 宁