文章编号:1671-1114(2010)01-0033-04

溅射沉积 TiO2薄膜结构及性能的基础研究

吉亚萍¹,张琳琳¹,李 鹏¹,侯兴刚^{1,2},黄美东¹

(1. 天津师范大学物理与电子信息学院, 天津 300387;

2. 北京师范大学射线束技术与材料改性教育部重点实验室,北京 100875)

摘 要:采用超高真空反应射频磁控溅射方法,利用高纯 Ti 靶在光学玻璃基底上制备具有一定厚度的 TiO2薄膜 样品.通过扫描探针显微镜对其表面形貌进行观测和分析,利用 XRD 初步探讨了退火对薄膜结构及其透射率的影 响,并研究了不同 O₂/Ar 流量比对薄膜沉积速率的影响.

关键词:磁控溅射; TiO2薄膜; 退火

中图分类号: TB79;O43

文献标识码: A

Basic studies on the microstructure of TiO₂thin films fabricated by sputtering

JI Yaping¹, ZHANGLinlin¹, LI Peng¹, HOU Xinggang^{1,2}, HUANG Meidong¹ (1. College of Physics and Electronic Information, Tianjin Normal University, Tianjin 300387, China;

2. Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875, China)

Abstract : TiO_2 thin films with a certain thickness were fabricated on optical glass by RF reactive magnetron sputtering. The morphology of the TiO_2 thin films was investigated and analyzed using scanning probe microscopy. The effects of annealing were discussed on the microstructure and the transmission spectra, and the influence of the ratio of O_2/Ar on the deposition rate was also investigated.

Key words: magnetron sputtering; TiO₂ thin films; annealing

近年来,TiO2薄膜因为在可见光区具有高透射 率和高折射率,在紫外区具有强烈的吸光性能等特 性,正成为一种非常重要的光学膜,已被广泛地应用 于太阳能电池^[1]、抗反射涂层、干涉滤波片和薄膜光 波导^[2→]等领域.此外,TiO2薄膜具有固态催化剂的 优点,又因纳米材料的量子尺寸效应和表面效应而 具有较高的光催化性能,在光催化降解有机物和防 雾自清洁领域展示了非常广阔的应用前景^[4→5]. TiO2薄膜具有锐钛矿和金红石两种晶体结构^[6],其 中,锐钛矿相 TiO2薄膜对有机污染物降解的催化性 高、持续时间长,对工作条件要求低且容易回收利 用,在环境保护领域倍受重视,已经成为薄膜科学与 技术领域的研究热点之一. TiO²薄膜的性质会随着制备方法的不同而有 所变化.目前,TiO²薄膜的制备方法很多,例如溶胶-凝胶法^[7]、化学气相沉积法^[3,8]和溅射法^[9]等.其中, 溶胶-凝胶法的工艺简单易行,但制备出来的薄膜膜 厚均匀度难以控制,不够致密.同时,与化学气相沉 积法所得的薄膜相似,由溶胶-凝胶法制备的薄膜与 基底的附着力差,膜层易脱落,难以长期、循环应用. 溅射法是一种高效、无污染的镀膜方法,由于具有成 膜牢固、易于控制等优点而被广泛应用于工业化生 产.同时,它还具备沉积速率高和可在室温下镀膜等 特点,非常适于大面积镀膜^[10].

目前,大多数研究^[2-5]主要关注 TiO2薄膜的光 催化特性.本研究采用反应射频磁控溅射方法制备

收稿日期:2009-09-15

基金项目 :教育部留学回国科研启动基金资助项目(2008) ;天津师范大学中青年教师学术创新资助项目(52X09038) 第一作者 :吉亚萍(1986 —) ,女 ,硕士研究生.

通讯作者:黄美东(1972 ---),男,博士,副教授,主要从事功能薄膜方面的研究.

TiO₂薄膜,重点考察退火处理对 TiO₂薄膜结构和光 学性能的影响,研究结果可为 TiO₂薄膜应用于可见 光波段的一维光子晶体提供基础依据.

1 实验方法

1.1 实验材料

高纯 Ti 靶材(直径 50.9 mm,厚度 5.0 mm,纯 度 99.99%);天津晶蓝光电技术有限公司生产的 K9 双面抛光玻璃;氩气(纯度 99.99%);氧气(纯度 99.99%);无水乙醇;丙酮等.

- 1.2 薄膜的制备
- 1.2.1 衬底预处理

为去除基片表面的污染物,使其表面清洁,以达 到提高膜基结合力的目的,镀膜前,将光学玻璃片浸 泡在丙酮中,用超声波振荡清洗 10 min,再用无水 乙醇和丙酮清洗,烘干后,迅速放在真空室内的基片 支架上.

1.2.2 制备 TiO2薄膜样品

使用 FIL560CI2 型超高真空磁控溅射设备,以 预先置入的光学玻璃为基底,采用射频磁控反应溅 射法,在室温下制备 TiO2薄膜.每次溅射前,均预溅 靶材,直至靶表面辉光放电的颜色由粉红色变为蓝 白色,表明已除去靶表面的氧化物等杂质.此时,再 通入氧气进行反应溅射,沉积制备薄膜样品.制备样 品的基本工艺参数如表1所示.

表1 溅射镀膜基本工艺参数

Table 1	Experimental p	arameters of spu	ttering
实验参数	本底真空	靶基距	溅射偏压
数值	3 ×10 ⁻⁴ Pa	70 mm	120 V
实验参数	溅射功率	溅射时间	工作气压
数值	100 W	7 200 s	0. 15 Pa

1.3 TiO2薄膜的表征

利用 <u>CSPM5000 扫描探针显微镜</u>对 TiO₂ 薄膜 表面进行观测和分析.将 TiO₂ 薄膜进行退火处理, 在 450 °C 下保温 4 h 后慢冷.采用日本产 D/Max 2500型 X 射线衍射(XRD) 仪对退火前后 薄膜的物相结构进行对比分析,采用波长为 0.154 06 nm的 Cu 靶 K 射线;利用 WGD-8 8A 型 组合式多功能光栅光谱仪测试 TiO₂ 薄膜在可见光 波段的透射率;采用美国 Ambios 公司的 XP2 型表 面轮廓仪测量薄膜的厚度.

- 2 结果分析与讨论
- 2.1 TiO₂薄膜的表面形貌

图 1 为在扫描探针显微镜下观察到的 TiO2 薄

膜样品表面形貌. 从图中可以看出,室温下沉积的 TiO2薄膜表面上有一些均匀的凸起,这是由于薄膜 以岛状模式生长^[11],在表面形成弥散分布的岛. 从 图中标尺可以看出,岛的高度很小,最大仅为 6 11 nm, 说明 TiO2薄膜表面比较平整. 同时,薄膜表面未观 察到明显的孔洞、裂纹等缺陷,说明其生长均匀 致密.

图 1 在扫描探针显微镜下 TiO2薄膜样品的表面形貌

Fig. 1 The morphology of TiO₂ thin films observed by scanning probe microscopy

2.2 退火对 TiO2薄膜相结构的影响

图 2 为溅射沉积所得 TiO2薄膜样品退火前的 X 射线衍射图谱.图中明显且宽大的卫星峰是 X 射 线穿透薄膜后受到基底玻璃弥散衍射的结果,除此 之外,XRD 图谱中基本观察不到来自薄膜的衍射 峰,说明该工艺条件下制备的 TiO2薄膜呈现非晶 态.由于溅射粒子能量较低,同时,玻璃基底在沉积 过程中没有加热,沉积温度较低,粒子沉积到基底表 面后迅速冷却,不能进行有效地迁移和扩散^[12],使 得粒子基本以无序方式排列,导致 TiO2 结晶度低, 所得薄膜呈现非晶态.

图 2 TiO₂ 薄膜样品退火前的 X射线衍射图谱 Fig. 2 X-ray pattern of the as deposited TiO₂ film TiO₂ 薄膜样品退火处理后的 XRD 图谱如图 3 所示.结果显示 XRD 衍射图谱上出现了明显的衍 射峰.经分析可知,这些衍射峰对应于 TiO₂的锐钛 矿相(Anatase) 晶态^[13],说明样品经过退火处理, TiO₂薄膜由非晶态转变成为晶态.这是因为在热处 理过程中,薄膜原子获得足够的能量,具有较大的迁 移能和扩散能,微观结构向着系统总能量降低的方 向调整,排列出现有序化,即由非晶态转变为晶态.

图 3 TiO₂ 薄膜样品退火后的 X射线衍射图谱 Fig. 3 Xray pattern of the annealed TiO₂ film

2.3 退火对 TiO₂薄膜透射率的影响

图 4 为 TiO² 薄膜样品退火前后的透射率谱 线.可以看出,无论是否经过退火处理,TiO² 薄膜的 透射谱均类似于正弦图像,且波峰和波谷的位置没 有发生变化,但对于 360 nm 和 600 nm 波长附近的 光波,退火后的 TiO² 薄膜透射率明显高于退火前. 这是因为沉积薄膜过程中,TiO² 分子到达处于室温 的基底时,能量骤减,其沉积原子来不及规则排列, 造成大量的晶格缺陷,导致光吸收增加,透过率减 小^[14].而退火后的 TiO² 薄膜呈现出锐钛矿相晶态, 其微观结构细化,致密度增大,对光波的吸收减小, 使得透射率在一定程度上得以提高.

图 4 TiO₂ 样品薄膜退火前后的透射谱线

Fig. 4 Transmittance spectra of the as deposited and the annealed samples

 2.4 O₂ / Ar 流量比对 TiO₂薄膜沉积速率的影响 为考察不同 O₂ / Ar 流量比对 TiO₂薄膜沉积速 率的影响,设计实验的具体实验参数如表 2 所示.

表 2 制备薄膜样品时的气体流量

Table 2Gas flows f	or thin film samples
--------------------	----------------------

样品编号	$\frac{q_{\rm O_2}}{\rm sccm}$	$\frac{q_{\rm Ar}}{\rm sccm}$	$q_{\rm O_2}$ $q_{\rm A}$	r
090611-1	0. 2	60	1 300	
090611-2	0. 2	50	1 250	
090611-3	0. 2	40	1 200	

利用表面轮廊仪测量 TiO2薄膜的厚度,并计算 其沉积速率,结果如图 5 所示.由图 5 可知,薄膜的 沉积速率随 O2/Ar 流量比的减少呈现先增大后减 小的 趋势,在比值为 1 250 时达到最大 (21.5 nm ·h⁻¹).这是因为在氧分压较大的情况 下,靶材表面进入反应模式,即靶面高度氧化,因此 溅射量降低,沉积速率随之下降,膜厚减小.随着氧 分压的减少,靶面进入转变模式,溅射量较高,同时 氧分子足够与 Ti 原子反应结合,因此具有较高的沉 积速率^[15].随着溅射气体中氧分子继续减少,虽然 Ti 原子仍有较大溅射量,但是能够与 Ti 原子结合 的氧原子变少,导致难以形成 TiO2,因此,薄膜的沉 积速率变小,膜厚随之减小.

图 5 O₂/Ar 流量比与沉积速率的关系曲线

3 结论

本研究采用超高真空反应射频磁控溅射方法, 在光学玻璃基底上制备一系列具有一定厚度的 TiO2薄膜样品,并对其结构,表面形貌和光学性能 进行分析,初步探讨了退火和 O2/Ar 流量比对薄膜 性能的影响,得到以下结论:

(1)采用反应磁控溅射制得的 TiO₂薄膜结构致 密,表面均匀. (2)室温下溅射所得 TiO₂薄膜呈非晶态结构.经 450 ℃ 退火处理 4 h 后,该薄膜晶化为锐钛矿相.

(3) 退火处理后,薄膜的透射谱线与退火前相 似,即波峰与波谷的位置均没有明显改变,但退火处 理可在一定程度上提高 TiO2薄膜对波长为 360 nm 和 600 nm 光波的透过率.

(4) O₂/Ar 流量比对 TiO₂薄膜的沉积速率有一 定影响.随着 O₂/Ar 流量比的降低,薄膜的沉积速 率先增大后减少,在比值为 1 250 时,沉积速率达 到最大.

参考文献:

- [1] 李丽,张贵友,陈人杰,等. 染料敏化太阳能电池及 TiO2薄膜 材料研究进展[J]. 功能材料,2008,11(39):1765-1769.
- [2] Orazio A D, Sario M D, Mescia L, et al. Design of Er³⁺ doped SiO₂-TiO₂ planar waveguide amplier [J]. Journal of Non-Crystalline Solids, 2003, 322:278-283.
- [3] Bessergeneva V G, Khmelinskii I V, Pereira R J F, et al. Preparation of TiO₂ films by CVD method and its electrical, structural and optical properties [J]. Vacuum, 2002, 64:275-279.
- [4] Fujishima A, Zhang X. Titanium dioxide photocatalysis:present situation and future approaches[J]. C R Chimie, 2006, 9: 750-760.
- [5] Fujishima A, Tata N R, Tryk D A. TiO₂ photocatalysts and diamond electrodes[J]. Electrochemica Acta, 2000, 45:4683-4690.
- [6] Jung C K, Lee S B, Boo J H, et al. Characterization of growth

(上接第 28 页)

blowfish-CBC 将 blowfish 算法和密码分组链 接(CBC)模式结合起来,即加密前先对明文数据块 做 CBC 变换,然后再进行加密.

OpenVPN 支持多种加密算法,修改服务器和 客户端的配置文件可以设定使用何种加密算法.在 服务器与客户端的配置文件中增加语句"cipher BF-CBC '即表示使用 blowfish-CBC 算法加密数据.

3 结论

SSL VPN 系统在解决远程访问的问题时优势 明显,根据具体应用场合,采用适合的安全策略,能 够有效提升系统安全性能,节约部署成本,提高访问 速度. OpenVPN 作为出色的开源 SSL VPN 软件, behavior and structural properties of TiO_2 thin films grown on Si (100) and Si (111) substrates [J]. Surface and Coatings Technology, 2003, 174/175:296-302.

- [7] Chantal G, Bernard B, Cédric D, et al. Physicochemical properties and photocatalytic activities of TiO₂-films prepared by sol-gel methods [J]. Applied Catalysis B: Environmental, 2002, 39:331-342.
- [8] Backman U, Auvinen A, Jokiniemi J K. Deposition of nanostructured titania films by particle-assisted MOCVD[J]. Surface & Coatings Technology, 2005, 192:81-87.
- [9] Barnes M C, Kumar S, Green L. The mechanism of low temperature deposition of crystalline anatase by reactive DC magnetron sputtering[J]. Surface & Coatings Technology, 2005, 190:321-330.
- [10] 石中兵,童洪辉,赵嘉学.磁控溅射矩形靶磁场的优化设计[J].真空与低温,2004,10(2):112-116.
- [11] 吴自勤, 王兵, 薄膜生长[M]. 北京:科学出版社, 2001.
- [12] 林志东,刘黎明. AFM 分析磁控溅射法制备的 TiO₂纳米薄 膜[J]. 武汉化工学院学报,2005,27(1):52-55.
- [13] 孟凡明,周明飞,宋削平,等. 退火温度对 TiO2薄膜结构与 光学性能的影响[J]. 功能材料,2007,11(38):1773-1776.
- [14] 王学华, 薛亦渝, 赵利, 等. 新型光学薄膜研究及发展现状[J]. 武汉理工大学学报, 2002, (24):220-223.
- [15] 常学森,巴德纯,闻立时,等.磁控反应溅射氧流量变化对 TiO₂薄膜影响的实验研究[J].真空与低温,2007,13(3): 163-167.

(责任编校 纪翠荣)

为实现具体的安全策略提供了可能. 参考文献:

- [1] 王颖,熊军洁,王媛. SSL VPN-攀登巴别塔的云梯[J].图书 馆工作与研究,2009,7:46-47.
- [2] Chou W. Inside SSL : the secure sockets layer protocol[J]. IT Professional, 2002, 4(4):47-52.
- [3] Charlie H. OpenVPN and the SSL VPN revolution [EB/OL]. [2009-03-05]. http://www.openvpn.net/index.php/opensource/documentation.html.
- [4] 金家琴. 基于 SSL VPN 技术实现公共图书馆电子资源远程访问[J]. 图书馆杂志, 2009, 28(3):62-63.
- [5] 钟黔川,朱清新. Blowfish 密码系统分析[J]. 计算机应用, 2007, 27(12):40-41.

(责任编校 纪翠荣)