过氧化氢抛光液体系中钌的化学机械抛光研究

储向峰* 汪 婕 蓮永平 乔红斌 张王兵

(安徽工业大学化学化工学院,安徽马鞍山 243002)

摘 要:本文研究了过氧化氢(H_2O_2) 抛光液体系中金属钌的化学机械抛光行为 采用电化学分析方法和 X 射线光电 子能谱仪(XPS) 分析了氧化剂和络合剂对腐蚀效果的影响 利用原子力显微镜(AFM) 观察抛光表面的微观形貌. 结果 表明:在过氧化氢抛光液体系中 金属钌表面钝化膜的致密度和厚度与醋酸(CH₃COOH) 和 H_2O_2 的浓度有关. 抛光液 中醋酸主要通过促进阳极反应的进行从而增强抛光液对金属钌的化学作用 CH_3 COOH 作为络合剂比三乙醇胺(TEA) 或酒石酸($C_4H_6O_6$) 得到的抛光速率更高. 低浓度 H_2O_2 通过增强抛光液对金属钌的化学腐蚀 抛光速率增大 校高浓 度 H_2O_2 可能通过在金属表面形成较厚的氧化膜 抛光速率下降. XPS 图谱说明钌片浸泡在含醋酸介质过氧化氢体系 抛光液后 f_1 、氧原子相对含量之比约为 2: 3 而且金属钌被氧化到四价和八价 这可能是因为金属钌表面生成 RuO₂ 和 RuO₄. 抛光后的金属钌表面在 5 μ m ×5 μ m 范围内平均粗糙度 S_a 由抛光前的 33 nm 降至 6.99 nm. 关键词: 钌; 化学机械抛光; 电化学检测; 过氧化氢; 络合剂 中图分类号: TG175.3 文献标志码: A 文章编号:1004 - 0595(2012) 05 - 0421 - 07

Chemical Mechanical Planarization of Ruthenium in Hydrogen Peroxide – Based Slurry

CHU Xiang – feng^{*}, WANG Jie, DONG Yong – ping, QIAO Hong – bin, ZHANG Wang – bing (School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China)

Abstract: In this paper , chemical mechanical polishing behaviors of Ruthenium (Ru) in hydrogen peroxide (H_2O_2) – based slurry are investigated. The effect of the oxidizing agent and complexing agents on the corrosion behaviors are investigated by using electrochemical measurement and X – ray photoelectron spectroscopy. And the polished Ru surface is characterized by atomic force microscopy. Results show that the tightness and thickness of the passive film on the surface of Ru are related to the concentrations of CH₃COOH and H₂O₂. CH₃COOH can accelerate the anode reaction and enhance the chemical action of the slurry on the surface of Ru. The material removal rate (MRR) of Ru in slurries with CH₃COOH as complexing agent is higher than that of TEA or C₄H₆O₆. H₂O₂ at low concentration promotes the chemical corrosion ability to corrode Ru surface and increases MRR , the increasing of H₂O₂ concentration of H₂O₂. The XPS results suggest that the atomic ratio of Ru to oxide is about 2: 3 and Ru is oxidized to Ru⁴⁺ and Ru⁸⁺ just after the immersion of Ru into the H₂O₂ – based slurry with CH₃COOH because of the formation of RuO₂ and RuO₄ on the Ru surface. The roughness average (S_a) of Ru surface can be reduced from 33 nm to 6.99 nm after polished within 5 μ m ×5 μ m area.

Key words: ruthenium , chemical mechanical planarization , electrochemical measuremen , hydrogen peroxide , complexing agents

* Corresponding author. E - mail: xfchu99@ ahut. edu. cn , Tel: +86 - 15655578576.

Received 10 February 2012 revised 17 May 2012 accepted 4 July 2012 available online 28 September 2012.

The project was supported by the National Natural Science Foundation of China (50975002), TD201204 of AHUT and the research project for university personnel returning from overseas sponsored by the Ministry of Education of China.

国家自然科学基金项目(50975002)、安徽工业大学创新团队项目(TD201204)和教育部高校留学回国人员科研项目资助.

在动态随机存储器(DRAM)中,金属-绝缘 体-金属形式的电容器被广泛的研究^[1-2].惰性贵 金属钌(Ru)化学性质较为稳定,在氧化条件下仍具 备较好的导电性,且与高介电材料存在良好的兼容 性^[3],可以作为动态随机存储器(DRAM)设备中的 底电极材料使用.在DRAM 中钌底电极的表面需要 平坦化,化学机械抛光(chemical mechanical planarization,CMP)是目前几乎唯一可以提供全局平 坦化的技术,可以得到用其他任何平坦化加工无法 得到的低的表面形貌变化^[4].

关于金属 Ru 化学机械抛光国内目前几乎没有 报道 国外报道较少^[5-6]. W J Lee 等^[5] 采用硝酸铈 铵一HNO, 抛光液对金属 Ru 进行化学机械抛光试 验 结果表明: 金属 Ru 表面生成的 Ru, O, 的去除, 促进了 RuO₂、RuO₄ 生成 从而提高了金属 Ru 的抛 光速率. I K Kim 等^[6]使用 NaIO₄ 作为金属 Ru 抛光 的氧化剂 结果表明: 当抛光液 pH 为 4~7 时, 抛光 过程中化学作用起主导作用; 当抛光液 pH 值为 8~ 10 时 抛光过程中机械作用起主导作用. 目前几乎 没有文献报道关于金属 Ru 在过氧化氢体系抛光液 的研究. H₂O₂ 的氧化能力较强,且对抛光液无金属 离子污染,生成的氧化产物为H₂O,对后续试验无打 扰 是理想的氧化物.由于金属 Ru 化学机械抛光涉 及到复杂的反应机理和动力学过程,许多化学反应 的相关参数都与抛光液有关,研究金属 Ru 与抛光 液化学行为最好的方法是电化学检测. 如张伟等^[7] 利用电化学工作站等检测手段研究了抛光液中氧化 剂 H₂O₂ 和络合剂氨基乙酸对铜的作用机制. 戴媛 静等^[8]通过对抛光液的电化学分析,结果表明抛光 液中不同组分对钛表面缓蚀膜有吸附和破坏作用, 两者达到平衡状态才能得到最佳抛光效果.本文分 别采用电化学分析方法和 X 射线光电子能谱仪分 析了抛光液中氧化剂和络合剂对腐蚀效果的影响, 利用原子力显微镜(AFM) 观察金属 Ru 抛光表面的 微观形貌.

- 1 实验部分
- 1.1 试验材料

采用 H_2O_2 体系抛光液 $,SiO_2$ 质量百分数均采 用 1%,络合剂三乙醇 胺(TEA)和酒石酸 ($C_4H_6O_6$)质量百分数为 1%,其中 H_2O_2 和 CH_3COOH 的质量百分数分别为 0.5%, 1%, 2%, 3%和5%. SiO₂ 抛光磨粒平均直径为 30 nm. 所有 的试剂均为分析纯试剂.

1.2 化学机械抛光试验

抛光试验在沈阳科晶制造有限公司生产的 UNIPOL-1000型抛光机上进行,运用 P-PAD 型合 成革抛光垫和金属钉片(直径 52 mm、厚 3 mm,纯度 99.99%).抛光垫和抛光样品同方向旋转,转速为 50 r/min,抛光液流量为 50 mL/min,抛光压力为 6.9 kPa,抛光时间 10 min,抛光温度为室温.采用金 诺 JF1004型精度为 0.1 mg 的电子分析天平测量试 验前后钌片的质量,通过计算获得钌的抛光速率.

1.3 电化学试验

利用天津兰力科 LK2005A 型电化学工作站进 行 Tafer 曲线、OCP – T 曲线和交流阻抗谱的测试. 测试在圆盘电极上进行,金属钌片(直径 16 mm、厚 3.2 mm 纯度 99.99%)为工作电极,测试前用砂纸 逐级打磨并用酒精清洗.抛光压力 6.9 kPa,抛光转 速 50 r/min,抛光垫为 P – PAD 型抛光垫并固定于 电解池内.饱和甘汞电极和铂电极分别作为参比电 极和辅助电极,电位扫描速率为 50 mV/s.测试装置 如图 1 所示.

1.4 元素形态和表面形貌分析

利用 ESCALAB 250 型 X 射线光电子能谱仪进 行金属钌表面元素组成和价态分析.

采用本原 CSPM4000 型扫描探针显微镜来测量 金属钌表面形貌. 设定原子力显微镜(AFM) 扫描范 围为 5 μm × 5 μm 扫描方式为接触模式.

2 结果与讨论

2.1 络合剂对钌极化曲线和抛光速率的影响

络合剂不仅可以提高材料抛光速率,与金属离 子形成稳定的络合物,而且还可以防止抛光材料表 面玷污或吸附,所以络合剂的选择对金属钌 CMP 有 重要影响.图2 是金属钌在不同络合剂抛光液中的 静态极化曲线.由图2 可见:在含1% SiO₂和1% H₂O₂的抛光液中加入1% CH₃COOH 之后,阳极曲

Fig. 2 Polarization curves of Ru in the slurries of various complexing agents (static)
 图 2 金属钌在不同络合剂抛光液中的极化曲线(静态)

线比阴极曲线向下移动更多,腐蚀电位(E_{corr})大幅 下降,腐蚀电流(I_{corr})略有增加. 这说明醋酸的加 入,促进了阳极反应,增强抛光液对金属钌的化学作 用. In – Kwon kim 等^[6]研究了 pH 值对金属钌抛光 过程中的影响,结果表明: 当 pH 小于 7.5,金属钌表 面钝化膜生成可溶性的 RuO₄,静态腐蚀速率提高. 阴极反应如公式(1)^[6]、(2)^[9]所示:

$$4\operatorname{RuO}_{4}^{-} + 4\operatorname{H}^{+} \longrightarrow$$

$$\operatorname{RuO}_{2} \cdot 2\operatorname{H}_{2}O + 3\operatorname{RuO}_{4}(\text{ soluble})$$
(1)

$$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$$
 (2)

 CH_3COOH 的加入,增加 H⁺浓度,不仅促进反 应(1)生成可溶 RuO₄,加快了腐蚀过程的阳极反 应,而且促进了反应(2)的进行.因此, CH_3COOH 的 加入增强了抛光液对金属钌的化学腐蚀作用,醋酸 在抛光液中不仅作为1种络合剂,而且作为1种酸 剂.在抛光液中加入1% TEA 或1% C₄H₆O₆ 之后,极 化曲线变化趋势相似.阳极曲线比阴极曲线向右移 动更多,腐蚀电位(E_{corr})下降,腐蚀电流(I_{corr})增加. 由于金属钌是惰性贵金属,当抛光液中仅含有1% SiO₂和1% H₂O₂时,并不能在金属钌表面达到好的 腐蚀效果.当抛光液中加入络合剂时,增强了抛光液 对金属钌静态腐蚀能力最强, CH_3COOH 介质的抛 光液对金属钌静态腐蚀能力最弱.

静态条件下,抛光液中氧化剂 H₂O₂ 与络合剂

在金属钌表面的反应决定了极化曲线^[10]. 动态条件 下,化学作用与机械作用共同影响极化曲线. 模拟化 学机械抛光过程中不同络合剂对金属钌的极化曲线 影响如图 3 所示. 图 3 中曲线 1 表示静态条件下的 极化曲线,曲线 2 表示在 6.9 kPa 及 50 r/min 抛光 条件下的动态极化曲线.

图 3 的极化曲线表明: 当 CMP 进行时,极化曲 线向右移动,这说明随着 CMP 进行金属钌表面钝化 膜被去除,金属钌重新裸露在抛光液中,从而增加了 腐蚀电流(*I*_{cor}),即机械去除作用的增加能增强金 属钌表面的化学腐蚀作用. 当络合剂为醋酸时,金属 钌的抛光速率值达到较大值 7.1 nm/min. 但络合剂 为三乙醇胺(TEA)时抛光速率仅为 4.3 nm/min,与 醋酸相比抛光速率降低了约 40%. 抛光液中加入不 同络合剂,对金属表面钝化膜的形态和抛光液中磨 料的稳定性有影响.

图4 是金属钌在含1% CH₃COOH 和1% SiO₂ 抛光液中,过氧化氢的质量百分数对金属钌抛光速 率的影响曲线.如图4所示当过氧化氢质量百分数 小于1%时,随着过氧化氢含量的增加,抛光液对金 属钌的化学腐蚀作用增强,金属钌的抛光速率增加; 当过氧化氢质量百分数为1%时,金属钌的抛光速 率达到较大值7.1 nm/min,此时金属钌表面的氧化 成膜速率与金属腐蚀速率、机械去除率达到较好的 平衡;之后,随着过氧化氢质量百分数的继续增加, 抛光速率值开始下降,最后趋于平缓.这可能是因为 当过氧化氢质量百分数增加到一定值时,金属表面 的氧化成膜速率大于机械去除速率,氧化膜不能及 时被去除,金属表面形成较厚的氧化膜降低腐蚀速 率,导致抛光速率降低^[11-12].

2.2 醋酸对金属钌极化曲线和抛光速率的影响

醋酸质量百分数对抛光液的 pH ,金属钌表面的 钝化膜的致密性、完整性和厚薄有较大的影响. 图 5 是金属钌在含不同质量百分数醋酸抛光液中的静态 极化曲线. 图 5 表明: 随着醋酸质量百分数的增加 , 阳极曲线和阴极曲线均向右移动 ,阳极反应和阴极 反应增强 ,腐蚀电流值随之增加 ,即抛光液对金属钌 的化学腐蚀作用随之增加. 腐蚀电流(I_{corr})大小表 示抛光液对被抛材料化学腐蚀能力的强弱. 腐蚀电 流(I_{corr})和静态腐蚀速率的变化趋势基本一致^[9]. 静态腐蚀速率越高 ,表面粗糙度也越高. 当醋酸质量 百分数增至 5% 时 ,腐蚀电流(I_{corr})较大 ,不利于金 属钌表面质量的提高.

图6金属钌在含1%H₂O₂和1%SiO₂抛光液

(c) Slurry containing 1% H₂O₂, 1% SiO₂ and 1% C₄H₆O₆
 (d) Slurry containing 1% H₂O₂, 1% SiO₂ and 1% TEA
 Fig. 3 Polarization curves of Ru in various slurries without and with abrasion (6.9 kPa and 50 r/min)
 图 3 金属钌在不同抛光液中的极化曲线

中, 醋酸质量百分数对金属钌抛光速率的影响曲线. 图 6 表明: 在低质量百分数条件下, 抛光速率随着醋酸质量百分数的增加而增加; 当醋酸质量百分数为 1%时,金属钌的抛光速率达到较大值7.1 nm/min; 之后,随着醋酸质量百分数的继续增加, 抛光速率值 随之降低并趋于平缓. 当醋酸质量百分数为 5%时, 金属钌的抛光速率仅为 5.3 nm/min. 何捍卫^[13]在 研究了铜在氨水介质铁氰化钾 CMP 抛光液中各因 素对抛光速率的影响.提出了 CMP 抛光液中各成份 的量均存在一特征浓度值 *C*_{max}的观点,即此浓度下 抛光速率最大.CMP 是 1 个动态过程,最大抛光速 率主要取决于化学溶解速率、成膜速率和除膜速率

的平衡. 即当醋酸质量百分数为 1% 时,金属钌 CMP 过程的成膜速率与去除速率达到较好的平衡.

2.3 醋酸对金属钌交流阻抗的影响

金属表面钝化膜电阻的大小与膜的厚度、致密 性有关^[14],通过对金属钌浸泡在不同质量百分数醋 酸溶液系统的阻抗谱测试,判断在此抛光液作用下 金属钌表面成膜的完整性和致密性. 图 7 是金属钌 在含 1% H₂O₂、1% SiO₂ 和不同质量百分数 CH₃COOH 抛光液中的静态条件下的阻抗图. 图 7 表明当醋酸质量百分数为 5% 时,阻抗谱中容抗弧 较大,即钝化电阻较大,说明金属钌表面腐蚀生成的 钝化膜较厚、致密. 当醋酸质量百分数为 1% 时,阻 抗谱中容抗弧明显下降,说明钝化电阻较小,也说明 金属钌表面腐蚀生成钝化膜变薄、致密性较差. 可见 抛光液中络合剂浓度的变化,导致钌表面膜厚度及 致密性的差异.

2.4 抛光过程中钌的氧化与极化分析

浓度 CH₃COOH 抛光液中的开路电压(OCP) 随时间 变化曲线.图中 5 条曲线的变化趋势基本一致.在 200 s 时进行 CMP ,OCP 值迅速升高;在 400 s 时停 止 CMP ,OCP 值缓慢下降至初始值.Woo – Jin Lee 等^[5]研究了金属钌在硝酸铈铵—HNO₃ 体系抛光液

中 CMP 结果也曾得到这一变化趋势,表明裸露的 Ru 的 OCP 大于 Ru₂O₃ 的 OCP. 在醋酸介质过氧化 氢体系的抛光液中,金属钌表面生成了钝化膜的 OCP 值比金属钌的 OCP 值低. 图 8 曲线的变化说明 金属钌表面生成的钝化膜主要阻滞阴极反应.

2.5 氧化膜的 XPS 分析

图 9 是金属钌在含 1% H₂O₂、1% CH₃COOH 和 1% SiO₂ 的抛光液中浸泡 15 min 后,金属表面的 Ru XPS 图谱. 对所得的 XPS 光谱进行拟合,拟合之后

得到 8 个峰,其中 280.11 和 284.18 eV 处的峰对应 零价 Ru; 280.74 和 285.11 eV 处的峰对应四价 Ru; 282.33 和 286.4 eV 处的峰对应八价 Ru; 283.32 和 287.69 eV 处的峰对应八价 Ru.

表1 是根据 XPS 图谱峰面积计算得到的钌、氧 的峰位置和相对含量. 从表1 中可以看出在含1% H_2O_2 、1% CH₃COOH 和1% SiO₂ 的抛光液中浸泡 15 min 后,金属钌表面存在四价钌和八价钌,这说明 此抛光液能够将金属钌表面氧化到四价和八价的形 态. 在金属钌表面,钌、氧原子相对含量之比约为 2:3,这可能是因为金属钌表面生成 RuO₂ 和 RuO₄.

表 1 XPS 图谱中 Ru、O 的峰位置和相对含量 Table 1 The position

of the peak and the peak interpret for the p	of	the	peak	and	the	peak	intensity	for	Ru	, (
--	----	-----	------	-----	-----	------	-----------	-----	----	-----

Name	Peak BE	At/%
Ru3d _{5/2} Scan A	280.11	22.74
Ru3d _{5/2} Scan B	280.74	11.93
Ru3d _{5/2} Scan C	282.33	4.01
Ru3d _{5/2} Scan D	283.32	2.15
01s	530.78	59.17

2.6 钌表面的形貌测量与分析

666.77

0.00

采用含 1% H₂O₂、1% CH₃COOH 和 1% SiO₂

的抛光液抛光金属钌表面 ,抛光前后金属钌表面在 5 μm ×5 μm 范围的三维形貌如图 10 所示. 抛光前 金属钌表面的 AFM 照片中出现一道较深的沟痕 ,在 5 μm × 5 μm 的范围内其 S_a (平均粗糙度) 值为 33 nm和 S_q (均方根粗糙度) 值为 42.7 nm. 抛光后金 属钌表面的 S_a 值为 6.99 nm S_q 值为 9.2 nm ,抛光 后表面粗糙度下降 ,但表面仍存在较为明显的高低 起伏. 如何更好地提高金属钌表面质量是我们今后 重点研究的方向之一.

3 结论

a. 单独以 H₂O₂ 作为金属钌的氧化剂时,并
 不能在金属钌表面达到较好的腐蚀效果. 在过氧化
 氢体系抛光液中加入络合剂,金属钌表面腐蚀溶解
 加剧. 其中醋酸作为络合剂和酸剂,促进了阳极反应,加快了金属钌表面钝化膜的溶解.

b. 金属钌在 1% H_2O_2 、1% SiO₂ 和 1% CH₃COOH 抛光液时,抛光速率达到7.1 nm/min. 金 属钌表面钝化膜的致密度和厚度与抛光液中醋酸 (CH₃COOH) 和 H_2O_2 的质量百分数有关. 醋酸增强 了抛光液对金属钌的化学作用; H_2O_2 质量百分数小 于 1% 时 通过增强抛光液对金属钌的化学腐蚀,从 而增加了抛光速率; H_2O_2 质量百分数大于1% 时,

Fig. 10AFM photographs of the Ru surface图 10金属钌抛光前后表面 AFM 照片

通过在金属表面形成较厚的氧化膜,从而降低了腐 蚀速率和抛光速率.

c. Ru XPS 图谱说明钌片浸泡在含 1% CH₃COOH 介质过氧化氢体系抛光液后,钌、氧原子 相对含量之比约为 2: 3,且金属钌被氧化到四价和 八价 推测认为金属钌表面生成 RuO₂ 和 RuO₄. 抛 光后的金属钌表面在 5 μ m × 5 μ m 范围内平均粗糙 度 S_a 由抛光前的 33 nm 降至 6.99 nm.

参考文献:

- [1] Yuichi Matsui , Masahiko Hiratani , Shinichiro Kimura , et al. Combining Ta₂O₅ and Nb₂O₅ in bilayered structures and solid solutions for use in MIM capacitors [J]. Journal of the Electrochemical Society , 2005 , 152(5): 54 – 59.
- [2] Ch Wenger ,R Sorge ,T Schroeder ,et al. MIM capacitors using amorphous high - k PrTi_xO_y dielectrics [J]. Microelectronic Engineering , 2005 , 80(17): 313 - 316.

- [3] Sang Yeol Kang, Kook Hyun Choi, Seok Kiu Lee, et al. Deposition and characterization of Ru thin films prepared by metallorganic chemical vapor deposition [J]. Journal of the Korean Physical Society, 2000, 37(6): 1040-1044.
- [4] Farid Malik, Masood Hasan. Manufacturability of the CMP process [J]. Thin Solid Films, 1995, 270: 612-615.
- [5] Woo Jin Lee, Hyung Soon Park. Development of novel process for Ru CMP using ceric ammonium nitrate (CAN) – containing nitric acid[J]. Applied Surface Science 2004 228: 410-417.
- [6] In Kwon Kim ,Byoung Gwun Cho ,Jin Goo Park ,et al. Effect of pH in Ru slurry with sodium periodate on Ru CMP[J]. Journal of the Electrochemical Society , 2009 , 156(3): 188 – 192.
- [7] Zhang W, Lu X C, Liu Y H, et al. Chemical mechanical polishing of copper in glycine H₂O₂ system slurry [J]. Tribology 2008, 28(4): 366 371(in Chinese) [张伟,路新春,刘宇宏,等. 氨基乙酸 H₂O₂ 体系抛光液中铜的化学机械抛光研究[J]. 摩擦学学报 2008, 28(4): 366 371].
- [8] Dai Y J, Pei H F, Pan G S, et al. Nanoscale planarization mechanism of titanium chemical mechanical polishing [J]. Tribology 2011 31(2):131-136(in Chinese) [戴媛静,裴慧 芳,潘国顺,等. 钛基片的化学机械抛光技术研究[J]. 摩擦 学学报 2011,31(2):131-136].
- [9] Y H Chen ,T H Tsai S C Yen. Acetic acid and phosphoric acid

adding to improve tantalum chemical mechanical polishing in hydrogen peroxide – based slurry [J]. Microelectronic Engineering 2010 87:174 – 179.

- [10] J P Zheng ,D Roy. Electrochemical examination of surface films formed during chemical mechanical planarization of copper in acetic acid and dodecyl sulfate solutions [J]. Thin Solid Films , 2009 517:4 587 - 4 592.
- [11] Y Nagendra Prasad, S Ramanathan. Chemical mechanical planarization of copper in alkaline slurry with uric acid as inhibitor[J]. Electrochimica Acta 2007 52:6 353 - 6 358.
- [12] Hu W, Wei X. Study on the performances of polishing slurry in chemical mechanical polishing [J]. Diamond and Abrasives Engineering 2006 (6): 78 – 80 (in Chinese) [胡伟,魏昕. CMP 抛光半导体晶片中抛光液的研究[J]. 金刚石与磨料磨 具工程 2006 , (6): 78 – 80].
- [13] He H W. Study on electrochemical mechanism polishing of copper [D]. Changsha: Central South University, 2002 (in Chinese) [何捍卫. 铜化学 机械抛光电化学机理与抛光速率的研究[D]. 长沙: 中南大学 2002].
- [14] Li X J Jin Z J Su J X *et al.* Applied study of electrochemistry theory on the copper chemical mechanical polishing [J]. Lubrication Engineering 2005 2(1): 106 108(in Chinese) [李秀娟,金珠吉,苏建修,等. 铜化学机械抛光中电化学理论的应用研究[J]. 润滑与密封 2005 2(1):106 108].