钴镍共掺TiO₂纳米薄膜的物理化学性质研究

罗书昌, 雷炳新, 孙振范*, 胡嘉清 (海南师范大学 化学与化工学院,海南 海口 571158)

摘 要:利用涂覆提拉法从钴镍的TiO₂反胶束纳米溶胶中制备钴镍共掺TiO₂纳米薄膜,用原子力显微镜(AFM)和紫外-可见光谱对钴镍共掺TiO₂纳米薄膜的形貌和光谱性质进行表征测试. 结果表明,钴镍共掺扩宽了TiO₂的光响应范围,提高了光学活性,掺杂1.5%钴镍的TiO₂薄膜的平均粗糙度和比表面积最大以及紫外可见光吸收最强.热处理发现,与500℃热处理温度相比, 700℃热处理的钴镍共掺TiO₂薄膜有优越的光学活性.

关键词:二氧化钛;纳米膜;钴镍共掺;紫外可见光谱;禁带宽 中图分类号:0647 文献标识码:A 文章编号:1674-4942(2013)02-0192-06

Study on Properties of Co-Ni codoped TiO₂ Thin Film

LUO Shuchang, LEI Bingxin, SUN Zhenfan, HU Jiaqing (College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China)

Abstract: A series of TiO₂ nano-films and Co-Ni codoped TiO₂ nano-films were prepared through TiO₂ nano reverse micelles sol and Co-Ni-codoped TiO₂ nano reverse micelles sol by dip coating method and heat treating under 500 °C and 700 °C. The nano thin films were characterized by atomic force microscope (AFM) and UV-VIS absorption spectra. The results show that the cobalt-nickel codoping TiO₂ films broadened the TiO₂ response range of light, and improved the optical activity, when the optimal molar ratio of (Co+Ni)/Ti was 1.5%, the average roughness, specific surface area and ultraviolet visible light absorbance of these Co-Ni codoped TiO₂ nano-films were the best. Compared with heat treatment under 500 °C, the Co-Ni codoped TiO₂ nano-films thave more optics activity under 700 °C heat treatment.

Key words: Titanium dioxide; Nano films; Co-Ni codoping; UV-VIS spectra; Bandgap

TiO₂纳米材料,因具有制备成本低、氧化能力 强、稳定性优良、无毒无二次污染等优点而成为光 催化和光解水制氢领域的研究热点课题^[1-3].但由 于TiO₂的禁带宽较大(3.2eV左右),只能被波长较 短的紫外光(λ<387 nm)激发并且受光激发形成的 电子-空穴复合几率大^[4],导致量子效率低.因此必 须对TiO₂光催化剂进行改性以拓宽其对光的响应 范围和降低光生电子-空穴的复合率.研究结果^[5-8] 表明,掺杂过渡金属离子是提高其光催化性能的重 要方法之一.孙振范^[9-10]等制备铁掺杂TiO₂纳米薄 膜、宋林云^[11]等制备钴掺杂TiO₂纳米颗粒、董刚^[12]等 制备镍掺杂TiO₂光催化剂等研究发现,掺杂过渡金 属的TiO₂纳米材料在高温时有效抑制锐钛矿相向 金红石相转变,同时能增强TiO₂的光催化活性. Hideki^[13]等制备了Sb/Ni,Sb/Cu,Sb/Cr共掺杂的TiO₂ 光催化剂,发现其在可见光区域显示了强烈的吸收 带. 闫俊萍^[14]、刘崎^[15]、陆诚^[16]制备了Cr/Sb、Fe/La或 Sn、及Fe/V共掺的TiO₂光催化剂,减少电子和空穴 的复合概率和扩展TiO₂的光响应范围方面产生协 同作用,对光催化性能优于掺杂单一金属的TiO₂光 催化剂.

本文研究使用反胶束方法^[9-10](α=n_{H20}/n_{op 3.化剂}= 1.33),首先制备TiO₂纳米溶胶和Co、Ni和Co-Ni元 素掺杂的TiO₂纳米溶胶,然后通过提拉涂覆及热处 理方法在玻璃基底上形成一定厚度的二氧化钛纳 米薄膜和掺杂二氧化钛纳米薄膜,并对其形貌和对 光的吸收性能进行研究.实验结果发现Co-Ni共掺 二氧化钛纳米薄膜的光学性能得到较大改善.

收稿日期:2013-03-20

基金项目:2011年海南省研究生创新科研课题(Hys2011-8) *通讯作者

1 实验部分

1.1 仪器与试剂

恒温磁力搅拌器 85-1(中外合资深圳天南海 北有限公司),TL0.01型垂直提拉机(沈阳科晶设备 制造有限公司),马弗炉(龙口市电炉制造厂),双光 束紫外-可见分光光度计TU-1901(北京普析通用 仪器有限责任公司),CSPM5000系列扫描探针显 微镜(本原纳米仪器公司).

OP乳化剂(化学纯,天津市福晨化学试剂厂), 环已烷(分析纯,广州化学试剂厂),异戊醇(分析 纯,广州化学试剂厂),钛酸丁酯(化学纯,上海三爱 思试剂有限公司),蒸馏水(自制),硝酸钴(化学纯, 广州化学试剂厂),硝酸镍(化学纯,广州化学试剂 厂).

1.2 TiO₂纳米薄膜和掺杂TiO₂纳米薄膜的制备

将 39.0 mL OP 乳化剂缓慢加入到适量环己烷 中,磁力搅拌几分钟,再缓慢加入1.4 mL的蒸馏水, 继续添加环己烷至200.0 mL,继续搅拌1h,溶液再 静置24h使其彻底分散形成反胶束溶液.在磁力搅 _ 拌条件下,将13.6 mL的钛酸丁酯(或含 $Co(NO_3)_2$ 和Ni(NO₃)₂)缓慢加入到34.0 mL异戊醇中制备钛 酸丁酯的异戊醇溶液,接着用分液漏斗将钛酸丁酯 异戊醇溶液缓慢滴加到反胶束溶液中,形成黄色透 明的TiO₂溶胶(或含Co-Ni掺杂TiO₂溶胶).利用垂 直提拉机以3.1 cm/s的速度在洁净玻璃片上涂覆 不同层数的钛溶胶,每次涂覆后自然晾干,再涂覆 下一层形成溶胶的薄膜,将制好的薄膜放置于马弗 炉中,以2℃/min的速度升温到500℃或700℃,恒 温90 min,自然降温后得不同厚度的TiO₂纳米薄 膜.为表示方便,所有条件均由字母和数字代号表 示,如膜A0201500的表示意义:A02表示掺杂方式 为Ti_{0.995}Co_{0.0025}Ni_{0.0025}O₂(K00表示无掺杂);01表示涂 覆层数为1;500表示热处理温度为500℃. 制备的 各种纳米薄膜见表1.

1.3 纳米薄膜形貌表征

使用 CSPM5000 系列扫描探针显微镜测量所 制备的各种 TiO₂薄膜的表面形貌.

1.4 纳米薄膜紫外-可见光谱测量

以洁净玻璃片做基线,选择波长范围为200~800 nm、扫描速度为中速、扫描波长间隔为1 nm, 使用TU-1901 紫外可见分光光度计测量各种TiO₂

薄膜的紫外-可见光谱.

表1 ノ	「同条件制备的TiO₂纳米膜及其禁带宽
Tab.1	$\text{TiO}_{\scriptscriptstyle 2}$ nano thin films prepared under
diff	erent conditions and their bandgap

Film	涂覆	掺杂方式	热处理	Extra.1/	Extra.2/
	层数		温度/	eV^{a}	$\mathbf{eV}^{\scriptscriptstyle b}$
			°C		
K0001500) 1	TiO ₂	500	3.68	3.36
K0003500) 3			3.68	3.38
K0005500) 5			3.66	3.22
K0001700) 1		700	3.66	3.22
K0003700) 3			3.68	3.34
K0005700) 5			3.68	3.32
A0201500) 1	$Ti_{0.995}Co_{0.0025}Ni_{0.0025}O$	₂ 500	3.72	3.26
A0203500) 3			3.53	2.95
A0205500) 5			3.63	3.26
A0201700) 1		700	3.63	3.02
A0203700) 3			3.67	3.25
A0205700) 5			3.66	3.34
B0201500) 1	$Ti_{0.99}Co_{0.005}Ni_{0.005}O_2$	500	3.72	3.18
B0203500) 3			3.18	2.78
B0205500) 5			3.66	3.28
B0201700) 1		700	3.58	2.96
B0203700) 3			3.71	3.36
B0205700) 5			3.64	3.24
C0201500) 1	$Ti_{0.985}Co_{0.0075}Ni_{0.0075}O$	² 500	3.74	3.41
C0203500) 3			3.70	3.30
C0205500) 5			3.65	3.29
C0201700) 1		700	3.62	3.18
C0203700) 3			3.67	3.30
C0205700) 5			3.63	3.30
D0101500) 1	$Ti_{0.98}Co_{0.02}O_{2}\\$	500	3.60	2.81
D0103500) 3			3.68	2.81
D0105500) 5			3.66	3.14
D0101700) 1		700	3.63	3.02
D0103700) 3			3.68	3.37
D0105700) 5			3.64	3.25
D0201500) 1	$Ti_{0.98}Co_{0.01}Ni_{0.01}O_2$	500	3.68	3.22
D0203500) 3			3.63	3.18
D0205500) 5			3.69	3.31
D0201700) 1		700	3.66	3.20
D0203700) 3			3.70	3.37
D0205700) 5			3.68	3.39
D0301500) 1	$Ti_{0.98}Co_{0.004}Ni_{0.016}O_2$	500	3.60	3.02
D0303500) 3			3.72	3.35

		续表			
Film	涂覆	掺杂方式	热处理	Extra.1/	Extra.2/
	层数		温度/	${\rm eV}^{\rm a}$	\mathbf{eV}^{b}
			°C		
D0305500) 5			3.64	2.91
D0301700) 1		700	3.66	3.16
D0303700	3			3.67	3.18
D0305700) 5			3.64	3.26
D0401500) 1	$Ti_{0.98}Ni_{0.02}O_{2}\\$	500	3.64	3.12
D0403500	3			3.70	3.36
D0405500	5			3.65	3.26
D0401700) 1		700	3.64	3.25
D0403700	3			3.68	3.38
D0405700	5			3.66	3.30

注 a Extra.1 代表 $(hvA)^2 \sim E\{hv\}$ 图中外推到 A=0 时的 E 值 (Extra.1 为 直接 跃迁的禁带宽); b Extra.2 代表 $(hvA)^{1/2} \sim E\{hv\}$ 图中外推到 A=0 时的 E 值 (Extra.2 为间 接跃迁的禁带宽)

2 结果与讨论

2.1 TiO₂纳米薄膜的AFM图

图1是Co、Ni含量不同掺杂TiO₂薄膜的AFM 图.不同条件制备的TiO₂纳米膜、禁带宽见表1,平 均粗糙度、平均直径、平均高度和比表面积见表2. 由图1、表1和表2可知,随着TiO₂纳米膜中钴镍含 量的增加,颗粒平均体积不断减小,平均粗糙度、比 表面积和颗粒多样性程度不断增大,当钴镍物质的 量分数为1.5%时,其值达到极值,而后随钴镍含量 的增大而反向变化;钴镍共掺TiO₂纳米膜的平均粗 糙度和比表面积比单一钴掺杂TiO₂纳米膜的平均 粗糙度和比表面积大.700℃热处理时,纯TiO₂应 是以对称性较高的金红石相.随着Co²+和Ni²+掺杂 量的增加,由于Co²+和Ni²+与Ti+离子半径比较接 近,所以容易掺杂到TiO₂纳米薄膜中,并产生了键 合作用,使Co²+和Ni²+取代TiO₂晶格中的Ti+形成了

图 1 Co、Ni 掺杂 TiO₂薄膜的 AFM 图 Fig.1 AFM Images of TiO₂ thin films doped with different molar ratio of (Co+Ni)/Ti

Co/Ni-O-Ti键;同时造成TiO2晶格中缺电子,为了 平衡晶体中电荷,必然形成氧空位,氧空位的形成 使晶胞结构的对称性降低,这样就较好地抑制了 TiO2由锐钛矿型向金红石型的转变,使其薄膜平均 粗糙度、比表面积和颗粒多样性程度增大.

2.2 紫外可见吸收光谱比较

由图2的紫外可见吸收光谱可知,随着TiO₂纳 米膜中钴镍含量的增加,紫外吸收边带红移,且吸 光度增大,当钴镍物质的量分数为1.5%时,吸光度

表2 Co、Ni含量不同掺杂TiO₂薄膜的平均粗糙度和比表面积

Tab.2 The average rough	ness and specific surface area of
-------------------------	-----------------------------------

TiO ₂ thin films doped with different molar ratio of (Co+Ni)/Ti						
flim	K0003700	A0203700	B0203700	C0203700	D0203700	D0103700
平均粗糙度/nm	1.00	1.07	1.40	2.15	1.38	1.31
平均直径/nm	115.3	93.95	78.79	74.90	86.84	116.8
平均高度/nm	4.401	4.386	5.526	4.420	4.352	4.820
比表面积	1.000663	1.000975	1.004404	1.012705	1.001124	1.000917

注 比表面积=薄膜的总表面积/薄膜的面积

2013年

达到最大值. 由图3的紫外可见吸收光谱可得,TiO₂ 薄膜的厚度越大,紫外吸收边带红移越明显,且吸 光度越大;700℃热处理的钴镍共掺TiO₂薄膜的光 学活性优于500℃热处理的钴镍共掺TiO₂薄膜的光 学活性优于500℃热处理的钴镍共掺TiO₂薄膜的 公本数型的钴镍非均掺TiO₂薄膜的紫外吸收边带 宽度和吸光度相差不大,且比钴镍单掺TiO₂薄膜的 紫外吸收边带宽度和吸光度大. 再结合图1和表2, 发现这些光谱特征和膜的结构形态有着密切的相 关性,即薄膜的平均粗糙度、比表面积和颗粒多样 性程度越大则薄膜的紫外吸收边带宽度和吸光度 越大. 原因是掺杂的Co²⁺和Ni²⁺改变了TiO₂薄膜晶 相,使其掺杂能级处于禁带之中,致使能吸收较长 波长的光子,从而扩展吸收光谱的范围,增强了对 可见光的吸收.

2.3 TiO₂纳米膜的半导体禁带宽

在TiO2半导体中,存在两种类型的光激发电子

ig.4 UV–VIS spectra of TiO₂ thin films single dope and codoped with cobalt and nickel

跃迁即直接跃迁和间接跃迁^[10.17,18]. 图 5 是 Daude^[19] 等计算的 TiO₂中的相对能级图,并用箭头表示示出 一些允许的直接跃迁和间接跃迁. 在 k 空间中,直 接跃迁为相同位置处导带的最低能级和价带的最 高能级间的跃迁;间接跃迁则为不同位置处导带的 最低能级和价带的最高能级间的跃迁.

对于直接跃迁的吸收光谱中的光学吸收系数 可用(1)式表示^[20],

 $ah\nu=B_d(h\nu-E_g)^{1/2}(B_d为直接跃迁的吸收常数)(1)$ 由式(2)可确定间接跃迁的光学系数^[20],

 $\alpha h \nu = B_i (h \nu - E_g)^2 (B_i 是间接跃迁的吸收常数)$ (2)

由 Lambet-Beer 定律知紫外可见光区的光吸 收度(A)与膜的厚度(d)间的关系为式(3):

$$A = -\lg \frac{I}{I_o} = \alpha d \left(\alpha \& \& \& b \end{pmatrix}$$
(3)

由式(1)变形得($\alpha h\nu$)²= $B_d(h\nu - E_g)$,再结合式 (3)易推出($h\nu A$)²= $B_d d^2(h\nu - E_g)$,同理可得($h\nu A$)^{1/2}= ($B_t d^{1/2}$)($h\nu - E_g$).由于同一块膜的厚度(d)相同,故 ($B_d d^2$)和($B_t d^{1/2}$)也是常数.因此可把孙振范^{1/0,1/1}等利 用膜的紫外可见光谱数据计算禁带宽的方法改进 为:先计算吸收边缘不同波长下($h\nu A$)²和($h\nu A$)^{1/2}, 再作($h\nu A$)²~ $E{h\nu}$ 和($h\nu A$)^{1/2}~ $E{h\nu}$ 图,如图6是膜 D0205500的($h\nu A$)²~ $E{h\nu}$ 和($h\nu A$)^{1/2}~ $E{h\nu}$ 图.由图 6可知,膜D0205500($h\nu A$)²~ $E{h\nu}$ 曲线在区间3.78-3.89eV内是一条直线,而($h\nu A$)^{1/2}~ $E{h\nu}$ 曲线在区间 3.60-3.81eV内也存在一直线段.然后在直线区间 内根据最小二乘法

建立直线回归方程: $\hat{y} = k\hat{x} + b$,其中[$y=(h\nu A)^2$ or ($h\nu A$)^{1/2}, $x=E\{h\nu\}$],外推至A=0时得到E的外推值, 同样的方法可计算其它膜的E的外推值,见表1.

表1数据结果显示,表中所列的膜均存在直接 跃迁和间接跃迁.总体而言,钴镍共掺TiO₂薄膜的

Fig.6 $(hvA)^2 \sim E\{hv\}$ and $(hvA)^{1/2} \sim E\{hv\}$ of Film D0205500

禁带宽度窄于钴镍单一掺TiO₂薄膜的禁带宽度,掺杂TiO₂薄膜的禁带宽度窄于不掺杂的TiO₂薄膜的 約禁带宽度.其原因是钴镍离子的掺杂使TiO₂晶体 的禁带中引入杂质能级和缺陷能级,光生电子和空 穴可经过这些中间能级跃迁,所需激发能降低,这 就使TiO₂在可见光区具有光催化活性.不仅如此, 钴镍离子掺杂可改变TiO₂结晶度或在TiO₂晶格中 引入缺陷,从而影响电子和空穴的复合;在TiO₂中 掺杂具有多种价态的钴镍离子可使其形成为光生 电了-空穴的浅势捕获阱,延长电子和空穴的复合 时间;另外钴镍离子具有比TiO₂更宽的光吸收范 围,可将吸收光进一步延伸到可见光区,总之,钴镍 离子的协同作用致使钴镍共掺杂TiO₂薄膜的禁带 宽降低,从而提高其光催化性能.

3 结论

本工作使用反胶束方法制备钴镍共掺TiO2薄膜,运用CSPM5000系列扫描探针显微镜对其表面形貌进行分析,并对钴镍共掺TiO2薄膜进行紫外-可见光谱分析,结果发现,钴镍共掺扩宽了TiO2的

光响应范围,提高了光学活性和光催化能力,且钴 镍共掺TiO₂薄膜存在钴镍含量的最佳值,即钴镍物 质的量分数为1.5%的TiO₂薄膜的平均粗糙度和比 表面积最大以及紫外可见光吸收最强;700℃热处 理的钴镍共掺TiO₂薄膜比500℃热处理的钴镍共 掺TiO₂薄膜紫外吸收边带红移明显,吸光度大.

参考文献:

- [1] Herrmann J M. Detrimental cationic doping of titania in photocatalysis:why chromium Cr³⁺ doping is a catastrophe for photocatalysis ,both under UV and visible irradiations
 [J]. New J Chem,2012,36:883–890.
- [2] Afzal S, Daoud W A, Langford S J. Self-cleaning cotton by porphy-sensitized visible-lingt photocatalysis[J]. J Mater Chem,2012,22:4083-4088.
- [3] Qian S S, Wang C S, Liu W J, et al. An enhanched CdS/ TiO₂ photocatalysis with high stability and activity: Effect of mesoporous substrate and bifunctional linking molecule [J]. J Mater Chem,2011,21:4945-4952.
- [4] 胡嘉清,羊华睿,罗书昌,等.紫外光还原法制备 Ag负载的 TiO₂纳米管阵列及其光催化性能的研究[J].海南师范 大学学报:自然科学版,2013,26(1):40-43.
- [5] 易均辉,莫惠媚,易灵红,等. 金属离子掺杂改性TiO2的研究进展及应用[J]. 化工技术与开发,2011,40(8):35-38.
- [6] 吴树新,马智,秦永宁,等. 过渡金属掺杂二氧化钛光催化 性能的研究[J]. 感光科学与光学,2005,23(2):94-101.
- [7]徐松梅,高朋召,石宗利,等.双元素掺杂改性二氧化钛的 研究进展[J]. 硅酸盐通报,2008,27(4):777-790.
- [8]朱鹏飞,刘梅,李黎明,等. 铜铁双金属掺杂 TiO₂/膨润土光 催化降解直接天蓝染料性能研究[J]. 非金属矿,2012,35 (1):55-60.
- [9] 孟洋,陈雪娇,孙振范. Fe 元素掺杂纳米晶结构和光物理 性质研究[J]. 海南师范大学学报:自然科学版,2010,23 (4):413-416.

- [10] 谭礼林,甘佐华,孙振范. Fe元素掺杂二氧化钛薄膜光物 理化学性质研究[J]. 海南师范大学学报:自然科学版, 2009,22(4):418-424.
- [11] 宋林云,吴玉程,刘晓璐,等. Co掺杂改性纳米TiO2颗粒的制备及其光催化性能[J]. 过程工程学报,2008,8(1): 165-171.
- [12] 董刚,朱忠其,柳清菊. 镍掺杂 TiO2光催化剂的制备及光 催化性能[J]. 功能材料,2012,43(3):294-298.
- [13] Hideki K, AkihiKo K. Visible-light-response and photocatalytic activities of TiO₂ and SrTiO₃ photocatalysts codoped with antinony and chromium[J]. J Phys Chem B,2002,106(19):5029.
- [14] 闫俊萍,唐子龙,张中太,等. TiO2双掺Cr,Sb的光催化性 能研究[J]. 稀有金属材料与工程,2005,34(3):429-432.
- [15] 刘崎,陈晓青,杨娟玉,等.双元素掺杂对纳米二氧化钛光 催化降解甲基橙的影响[J].河南化工,2004,21(2):8-10.
- [16] 陆诚,杨平,杜玉扣,等. Fe³⁺/V⁵⁺/TiO₂复合纳米微粒光催 化性能的研究[J]. 化学研究与应用,2002,14(3):265-269.
- [17] 孙振范,林小逸,颜立伟,等. TiO₂纳米膜紫外可见光谱 研究微粒的掺杂改性与催化活性[J]. 海南师范大学学 报:自然科学版,2005,18(2):149-155.
- [18] 陈霞. TiO₂薄膜及其多孔薄膜的溶胶-凝胶法制备与表征[D]. 呼和浩特:內蒙古师范大学,2009.
- [19] Daude N, Gout C, Jouanin C. Electronic band structure of titanium dioxide[J]. Phys Rev B,1977,15:3229.
- [20] Serpone N, Lawless D, Khairutdinovt R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO₂ Particles:Size Quantization or Direct Transitions in This Indirect Semiconductor[J]. Phys Chem, 1995, 99:16646– 16654.

责任编辑:毕和平