阴极弧离子镀 AlCrN 涂层原子力显微镜分析

付贵忠^{1,3} 孔德军^{1,2*} 张 垒^{1,3} 叶存冬^{1,3} (1常州大学机械工程学院 常州 213016;2. 江苏省大型重载齿轮传动工程技术研究中心 常州 213012 3. 江苏省企业研究生工作站 常州 213012)

Microstructures of AlCrN Coatings Synthesized by Cathodic Arc Ion Plating

Fu Guizhong^{1,3} ,Kong Dejun^{1,2*} Zhang Lei^{1,3} ,Ye Cundong^{1,3}

(1. College of Mechanical Engineering Changzhou University Changzhou 213016 China;

2. Jiangsu Province Engineering Technology Research Center for Large Heavy Gear Transmission Changzhou 213012 China;

3. The Graduates Research Station of Jiangsu Province Changzhou 213012 China)

Abstract The AlCrN coatings were synthesized by cathodic arc ion plating on substrate of Ti-based cermet. The impacts of the deposition conditions such as the pressure nitrogen flow rate deposition rate and substrate temperature on the microstructures and mechanical properties of the AlCrN coating were evaluated. The AlCrN coatings were characterized with scanning electron microscope and atomic force microscope. The results show that the compact AlCrN coatings have a major impact on enhancement of micro-hardness and wear-resistance of the Ti-based cermet substrate but weakly affect its surface roughness. The average grain sizes of the substrate and AlCrN coatings were 1460 and 1432 nm respectively. In addition the spectral power distribution of the anisotropic AlCrN coatings-was found to be irregular.

Keywords TiC based cermet cutting tool ,AlCrN coating ,Atomic force microscope ,3D surface micro-topography ,Power spectral density

摘要 利用阴极离子镀法在 TiC 基金属陶瓷刀具上制备了 AlCrN 涂层 通过扫描电镜观察了表面形貌,并用原子力显微 镜分析了三维表面微观形貌,获得表面粗糙度相关评定参数,同时对高度、层次、粒度、功率谱密度等进行了分析。结果表明, 表面粗糙度均方根偏差 TiC 基体为 85.8 nm, AlCrN 涂层为 175 nm, AlCrN 涂层与 TiC 基体表面相对平整, 阴极离子镀对表面 粗糙度影响较小; AlCrN 涂层表面高度值相对分散,支承系数大; AlCrN 涂层平均颗粒直径 1432 nm, 而 TiC 基体为 1460 nm, 根 据 Hall-Petch 关系, AlCrN 涂层的显微硬度远远高于 TiC 基体的显微硬度; AlCrN 涂层和 TiC 基体功率谱分布无规律, 材料表面 均表现为各向异性。

关键词 TiC 基金属陶瓷刀具 AlCrN 涂层 原子力显微镜 三维表面微观形貌 功率谱密度 中图分类号: 0462. 5; U177. 2 文献标识码: A doi: 10. 3969/j. issn. 1672 – 7126. 2014. 05. 08

CrN 涂层具有摩擦系数小、耐磨性能好、抗腐蚀 能力强和与基体结合力高等优点,其抗氧化温度达 到 700℃ 在刀具、模具、轴承等领域得到了广泛的 应用^[1-4]。在 CrN 涂层中加入 Al 元素 在高温下形 成 Cr₂O₃ 和 Al₂O₃ 致密氧化物,可以有效阻挡氧气 穿过涂层,使其抗氧化温度提高到 1000℃,提高了 其在高温下抗磨损性能^[5-8]。关于元素含量对及工 作条件对性能涂层摩擦磨损性能影响的研究较多, 研究结果表明,Al 含量越高,AlCrN 涂层抗高温氧化 性能越好,而对 AlCrN 涂层表面微组织与形貌的研 究甚少^[9-10]。原子力显微镜(AFM)由于其分辨率 高,而且可以得到材料表面微观形貌的粗糙度、颗粒 度等三维数据^[11],与材料摩擦磨损性有密切关系。 作者采用阴极弧离子镀技术在 TiC 基金属陶瓷刀具表 面制备 AlCrN 涂层,用于超大型齿圈的高效削加工。 通过 AFM 分析 AlCrN 涂层表面微观形貌,为 AlCrN 涂 层改善 TiC 基金属陶瓷刀具切削性能提供实验依据。

收稿日期:2013-06-06

基金项目: 江苏省科技支撑计划(工业) (No. BE2012066); 江苏省科技基础设施建设计划项目(BM2012337)

^{*} 联系人: Tel: (0519) 83290205; E-mail: kong-dejun@163. com

1 试验方法

基体材料为 TiC 基金属陶瓷刀具,采用纳米级 TiN 加入微米级 TiC 混合后经烧结制成,其中硬质 相为 TiC 和 TiN,粘接剂为 Ni,其化学成分(质量 比):TI 51.26%,W 19.55%,C 12.92%,Ni 7.63%, Co 8.64%。试样经除油喷砂处理后,用丙酮溶液超 声波清洗和无水乙醇脱水,恒温炉烘干后,在 PVT 镀膜机上进行镀膜。采用纯度为 99.99%的 Cr 和 Al 为靶材,镀膜参数为:真空度 3 × 10⁻³ Pa,炉内温 度 500℃,反应气体为 N₂,镀膜时间 120 min。采用 N₂ 气保护,经 180℃ 退火处理 2 h 后,用丙酮在 KQ2200DE 型数控超声清洗器,再采用去离子水超 声清洗,最后用吹风机烘干即得所需试样。通过 JSM-6360LA 型扫描电镜(SEM) 观察了表面形貌,利 用<u>CSPM5500型 AFM</u>对比分析了基体与涂层的表 面粗糙度、高度、层次度、粒度、功率谱。

2 试验结果与分析

2.1 表面形貌

图 1 为 TiC 基体与 AlCrN 涂层的表面形貌。 TiC 基体表面平整,无明显的表面缺陷,如图 1(a) 所示。AlCrN 涂层表面平整,致密性好,无缝隙和夹 渣现象,无未涂覆部位等缺陷,如图 1(b)所示。这 表明阴极弧离子镀的质量较高,表面存在白色颗粒, 这是由于离子镀时离子轰击时由于反溅射效应产生 的孔洞及凸峰,对涂层力学性能影响较小。

图 1 AlCrN 涂层-基体表面形貌

Fig. 1 Surface morphologies of the AlCrN coatings and TiC-based cermet substrate

2.2 粗糙度

利用 AFM 测得 TiC 基体与 AlCrN 涂层表面微 观形貌,如图 2 所示,图像尺寸:30000 nm × 30000 nm。与 TiC 基体表面相比,AlCrN 涂层在微观上形 貌存在凸峰与凹坑,AlCrN 涂层表面粗糙度略高于 TiC 基体表面粗糙度,如表1 所示。由表1 分析可

知 轮廓算术平均偏差 S_a 表示在取样长度内,被评 定轮廓上各点至中线纵坐标值 Z(x) 的绝对值算术 平均值^[12] 客观反映材料的微观几何特性,与峰谷 高度和轮廓形状有关,相对于粗糙度更能表达轮廓 误差的大小。TiC 基体的 S_a 值为 63.7 nm,而 AlCrN 涂层的 S_a 值为 135 nm,大约是 TiC 基体的两倍。

表1 AlCrN 涂层-基体表面粗糙度

Tab. 1 Surface roughness of the AlCrN coating and TiC-based cermet substrate

surface	average deviation of roughness S_a/nm	root mean square deviation of surface morphology $S_{\rm q}$ /nm	surfaces kewness $$S_{\rm sk}$$	surface kurtosis $S_{\rm ku}$	ten point height S_z /nm	surface bearing coefficient
TiC substrate	63.7	85.8	0.543	4.77	719	0.255
AlCrN coating	135	175	1	3.88	1.41e + 003	0.425

如图 2 所示,在材料三维微观形貌研究中,通常 采用表面形貌均方根偏差 S_q 、表面高度分布倾斜度 S_{sk} 、表面高度分布峭度 S_{ku} 、表面十点高度 S_z 作为主 要形貌表征参数。(1) S_q 表示在采样区域内,表面 粗糙度偏离参考基准的均方根值。TiC 基体与 Al-CrN 涂层的 S_q 值分别为 85.5 与 175 nm,这表明 Al-CrN 涂层的表面形貌起伏较大,这是由于离子镀时 离子轰击造成表面产生微观凹坑和凸峰,这使得 S_q 增大的缘故。(2) S_{sk} 表示表面偏差相对于基准表面 对称性的度量,若分布在基准面以上有较多的尖峰, 则 S_{sk} >0,反之亦然。TiC 基体与 AlCrN 涂层的 S_{sk} 值分别为 0. 543 和 1,其凸峰大部分存在于基准面 以上,AlCrN 涂层的尖峰数量大于 TiC 基体的尖峰 数量。(3) S_{ku} 表示形貌高度分布的形状,是形貌高 度分布的峰度和峭度的度量。TiC 基体与 AlCrN 涂 层的 S_{ku} 值分别为 4. 77 和 3. 88 ,表明 TiC 基体表面 凸峰高度分布更加集中,而 AlCrN 涂层表面形貌更 接近与 S_{ku} 值为 3 的高斯表面。(4) S_{z} 是在采样区 域内 5 个最高顶点高度和 5 个最深凹坑深度平均 值^[13], TiC 基体与 AlCrN 涂层的 S_{z} 分别为 719 与 1410 nm,由此可见,AlCrN 涂层表面相对平整。

图 2 AICrN 涂层-基体 AFM 形貌 Fig. 2 AFM images of the AICrN coatings and substrate

2.3 高度分析

2.3.1 面高度分析

图 3 为 TiC 基体与 AlCrN 涂层的高度分析图 谱。TiC 基体高度分布较为集中,表面峭度 S_{ku} 达到 4.77 ,而 AlCrN 涂层表面峭度 S_{ku} 为 3.88 ,高度分布 相对分散。由于 S_{ku} 值均大于 3 ,两者均为尖峰态曲 线。AlCrN 涂层相对 TiC 基体而言 ,表面微观高度 分布相对分散,分散范围 200~1200 nm。其表面轮 廓上部分的表面支承长度率相应增加,尖峰会较慢 磨损,有利于提高涂层的耐磨性能。同时表1可知, TiC 基体与 AlCrN 涂层的表面支承系数分别为0. 255 和 0.425,AlCrN 涂层表面支承能力明显优于 TiC 基体,与图3得出的结论相一致。

图 3 AlCrN 涂层-基体表面高度分析

Fig. 3 Surface height analysis of the AlCrN coatings and substrate

2.3.2 层次分析

如图 4 所示为 TiC 基体与 AlCrN 涂层的层次分 析图,又称支承分析。两条曲线均为光滑曲线,这表 明所有的加工过程均为规律性加工,不存在冲击过 程。这两条层次曲线不同的是在曲线上升阶段 TiC 基体的斜率较大,而 AlCrN 的斜率较小,这表明 TiC 基体的三维表面微观高度分布比较集中,高度集中 在200~800 nm 范围内,平均高度为277 nm。Al-CrN 涂层的三维表面微观高度分布比较分散,高度 分布在346~1423 nm,平均高度为690 nm,与2.3.1 中分析结果相一致。

图 4 AlCrN 涂层-基体表面层次分析

- Fig. 4 Surface hierarchy analysis of the AlCrN coatings and substrate
- 2.3.3 剖面高度分析

AlCrN 涂层剖面高度分析如图 5 所示。图 5 (a) 中标线 1 处为阴极弧离子镀制备 AlCrN 涂层时 离子轰击造成的一个凹坑,图 5(b) 为该处的剖面 图,可以看出该凹坑宽度约为 3 μ m,深度 100 nm。 同时分析标线 2 处的剖面高度,剖面线高度及层次 图如图 5(c) 所示,表面轮廓高度可以分为三个部 分: S_{pk} 、 S_{vk} ^[14]。 S_{pk} 为减少的波峰高度,数值为 325 nm,当 AlCrN 涂层发生磨损时,首先磨损的是这 部分,这部分形貌特征对磨损初期的磨损性能和磨 损机制有影响。 S_k 为核心粗糙度深度,数值为 562. 8 nm,是与工件接触磨损的主要部位,这部分高度值的增大有利于提高涂层的摩擦磨损性能。 S_{vk} 为减少的波谷深度,数值为 70 nm,是 AlCrN 涂层磨损后期发生的部位,对材料的表面粗糙度评定影响较小。 在图 4 层次分析中,两段轮廓分界线对应的数值之差即是标线 1 处的表面支承系数 $S_{bi} = M_{r2} - M_{r1} = 0$. 84,而高斯表面的表面支承系数为 0.61,支承系数 越大,表面的支承性能、摩擦磨损性能和润滑性能就 越好,这表明 AlCrN 涂层有良好的摩擦磨损性能。

图 5 AlCrN 涂层剖面图 Fig. 5 AFM line scan of the AlCrN coatings

2.4 粒度分析

TiC 基体晶粒最小面积 1717 nm²,最大面积 1.062×10⁷ nm²,平均面积 1.675×10⁶ nm²,平均直 径 1460 nm,有 90% 晶粒直径在 100~2200 nm 之 间 不同尺寸晶粒的含量基本相同,含量为0.2%, 大部分的晶粒面积集中在0~6×10⁶ nm²,如图6 (a)所示。AlCrN 涂层的颗粒最小面积2575 nm²,最 大面积1.503×107 nm²,平均面积1.611×10⁶ nm², 平均直径 1432 nm ,有 90% 颗粒直径在 100~2300 nm 之间 ,如图 6(b) 所示。根据 Hall-Petch 关系 ,TiC

基体晶粒尺寸大于 AlCrN 涂层,这是 AlCrN 涂层的显微硬度高于 TiC 基体的缘故。

图 6 AlCrN 涂层-基体表面粒度分析 Fig. 6 Grain size distributions of the AlCrN coatings and substrate

2.5 功率谱密度

功率谱密度分析是把时域和位置信息转换到频 域,得到某个频率或波长的详细分析、某一特定的轮 廓波形的频率组成,以及不同波长的成分在整个信 号中比重,研究不同波长对表面粗糙度的影 响^[13,15]。TiC基体的功率谱密度图如图7(a)所示, 总功率为7.36×10³ nm²,功率谱密度分布在58.7~ 7.5×10³ nm 波长范围内,其中功率为0.0225 nm² 时 表面最小波长为58.7 nm;在最高功率达到734 nm² 时,对应波长为 7.5×10³ nm。这表明材料表面 没有明显微观形貌分布的规律,呈现各向异性的特 点^[15]。AlCrN 涂层的功率谱密度图如图 7(b) 所 示,当功率为 0.017 nm² 时,材料表面最小波长为 58.7 nm;当功率达到 3.78×10³ nm² 时,波长为 6× 10³ nm。由于采样面积均为 30000 nm×30000 nm 时,AlCrN 涂层的总功率 3.01×10⁴ nm² 大于 TiC 基 体的总功率,表明 AlCrN 涂层的平均功率也高于 TiC 基体。

3 结论

(1) AlCrN 涂层表面形貌均方根偏差值为 175
 nm ,TiC 基体为 85.8 nm ,AlCrN 涂层粗糙度高于 TiC 基体。

(2) AlCrN 涂层三维表面微观高度分布相对 TiC 较分散, AlCrN 涂层的表面支承系数较大, 耐磨 性较好。

(3) AlCrN 涂层的晶体颗粒直径为 1432 nm ,小 于 TiC 基体的晶体颗粒 1460 nm ,表明 AlCrN 涂层 显微硬度高于 TiC 基体。 (4) AlCrN 涂层表面功率谱密度高于 TiC 基体, 在不同的波长上均呈现无规律分布,表现为各向异 性。

参考文献

- Mo J L ,Zhu M H. Tribological Oxidation Behaviour of PVD Hard Coatings [J]. Tribology International 2009 42 (11-12): 1758 - 1764
- [2] 陈康敏,郑陈超,张晓柠,等.电弧离子镀制备 CrN_x薄 膜中熔滴的结构表征与形成机制[J].真空科学与技 术学报 2011 31(6):681-685
- [3] Jose Barranco Felix Barreras Antonio Lozano et al. Influ-

ence of CrN Coating Thickness on the Corrosion Resistance Behaviour of Aluminium-Based Bipolar Plates [J]. Journal of Power Source 2011 ,196(9):4283-4289

- [4] 万先松,师玉英,马 军,等.电弧离子镀 CrN 涂层盐 雾腐蚀行为[J].金属学报 2010 46(5):600-606
- [5] Willmann H ,Mayrhofer P H ,Persson P O A ,et al. Thermal Stability of Al-Cr-N Hard Coatings [J]. Scripta Materialia 2006 54(11):1847 - 1851
- [6] 王新永 庞思勤. AlCrN 涂层硬质合金切削高温合金耐 用度对比实验[J]. 北京理工大学学报 2012 32(5): 450-454
- [7] Shin MinLee ,Han MingChow ,Fuang YuanHuang ,et al. Friction Drilling of Austenitic Stainless Steel by Uncoated and PVD AlCrN-and TiAlN-Coated Tungsten Carbide Tools [J]. International Journal of Machine Tools and Manufacture 2009 49(1):81-88
- [8] Lin Yueh-Jaw , Agrawal Ashutosh , Fang Yunmei. Wear Progressions and Tool Life Enhancement with AlCrN Coated Inserts in High-Speed Dry and Wet Steel Lathing [J]. Wear 2008 264(3-4): 226-234
- [9] 郑康培,刘 平,李 伟,等. Al 含量对 CrAIN 涂层微 观结构和力学性能的影响[J]. 真空科学与技术学报,

2011 31(6):686-690

- [10] Yucel Birol. Sliding Wear of CrN ,AlCrN and AlTiN Coated AISI H13 Hot Work Tool Steels in Aluminium Extrusion [J]. Tribology International ,2013 ,57 (1): 101 – 106
- [11] 林晓娉,何丽静,李晓惠,等.离子束溅射沉积Co纳
 米薄膜表面特征 AFM、XPS 分析[J].真空科学与技
 术学报 2007 27(6):504-507
- [12] Munz M. Microstructure and Roughness of Photopolymerized Poly (Ethylene Glycol) Diacrylate Hydrogel as Measured by Atomic Force Microscopy in Amplitude and Frequency Modulation Mode [J]. Applied Surface Science 2013 279(8): 300 - 309
- [13] 刘宪芳. 超精密加工表面的功率谱密度与分形表征 技术研究[D]. 哈尔滨:哈尔滨工业大学 2007
- [14] Spencer A ,Dobryden I ,Almqvist N ,et al. The Influence of AFM and VSI Techniques on the Accurate Calculation of Tribological Surface Roughness Parameters [J]. Tribology International 2013 57(1):242-250
- [15] 于 光 李 鹏,赵清亮,等.超精密加工表面特性的 功率谱密度表征与分析[J].哈尔滨工业大学学报, 2010,42(1):29-32

nnd.