溅射靶功率对类金刚石碳薄膜的结构和性能影响

周升国,刘正兵,刘龙,马利秋*

(江西理工大学 材料科学与工程学院,江西 赣州 341000)

摘 要:为改善304 不锈钢的性能,扩展其应用范围,采用磁控溅射技术在不同溅射靶功率下激发高纯石 墨靶在 p(100)单晶硅和 304 不锈钢表面沉积类金刚石碳薄膜。文章对所制备的系列类金刚石碳薄膜作 了 Raman 光谱、X 射线衍射(XRD)、原子力显微镜(AFM)、断口形貌的场发射电镜(FESEM)表征,并评价 了其纳米硬度与摩擦磨损行为。结果表明:所制备的类金刚石碳薄膜为典型的非晶态微结构;随着靶功率 的增大,类金刚石碳薄膜的 sp³键含量先增多后减少,表面粗糙度先降低后升高,硬度与弹性模量先升高 后降低;靶功率 200 W 时类金刚石碳薄膜取得最优性能,纳米硬度为 11.4 GPa,弹性模量为 129.3 GPa, 摩擦系数为 0.17,磨损率为 5.2×10⁻⁷ mm³(N•m)⁻¹。 关键词:靶功率、类金刚石碳、纳米硬度、摩擦磨损 中图分类号:TH 117; TQ164 文献标识码:A 文章编号:1673-1433(2015)04-0025-06

Influence of Sputtering Power on the Structure and Performance of Diamond-like Carbon Films

ZHOU Sheng-guo, LIU Zheng-bing, LIU Long, MA Li-qiu*

(School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China)

Abstract: In order to improve the performance of 304 stainless steel and to extend its application field, high purity graphite target is to be stimulated to deposite diamond-like carbon film on the surface of p(100) monocrystalline silicon and 304 stainless steel through magnetron sputtering technique under different sputtering powers. In this article, the series of diamond-like carbon films have been analyzed and studied through Raman spectroscopy, XRD, AFM and FESEM and their nano-hardness and friction and wear behavior have been evaluated. Result shows that the diamond-like carbon films developed have a typical amorphous microstructure. As the target power increases, the content of sp³ bond first increases and then decreases; the surface roughness first decreases and then increases; the hardness and elasticity modulus first increases and then decreases. The diamond-like carbon film presents the best performance when the target power is at 200W with a nano hardness of 11.4 GPa, elasticity modulus of 129.3 GPa, friction coefficient of 0.17 and wear rate of 5.2×10^{-7} mm³ (N · m)⁻¹.

Keywords: target power; diamond-like carbon film; nano hardness; friction and wear

304 不锈钢因其具有加工性能好、韧性高的特点,在工业和生活中有广泛的应用,但 304 不锈钢摩

擦磨损性能差,在应用中其摩擦件比较容易失效。因此,提高 304 不锈钢的摩擦学性能是扩大其应用范围

收稿日期:2015-06-17

作者简介:周升国(1981一),男,博士,副教授,研究领域:低维材料结构及摩擦学性能的研究。

基金项目:国家自然科学基金(No. 51365016),中科院兰化所国家重点实验室开放基金(LSL-1203)

通讯作者:马利秋,E-mail: zhoucreed@163.com

引文格式:周升国,刘正兵,刘龙,等.溅射靶功率对类金刚石碳薄膜的结构和性能影响[J].超硬材料工程,2015,27(4):25-30.

并延长其零部件使用寿命的关键因素。类金刚石碳 薄膜是一类非晶态的碳基薄膜材料,有许多优异的性 能,如高硬度、耐磨损、低摩擦系数、光透性、电绝缘 性、良好的化学稳定性以及耐腐蚀性等,其作为新型 功能薄膜材料,在精密机械、内燃机工业、电子、光学、 航天航空等诸多领域具有广阔的应用前景^[1-3]。利用 磁控溅射薄膜制备技术获得的以 sp²键为主的非晶 类金刚石碳薄膜,内应力较低、承载能力较大,而且其 摩擦学性能在大气环境中更为出色^[4,5]。因此,将类 金刚石碳薄膜在 304 不锈钢表面沉积能有效提高这 种不锈钢材料的耐磨性能。

本文采用直流磁控溅射技术,通过调节石墨靶的 溅射功率,在单晶硅和 304 不锈钢基底上沉积系列类 金刚石碳薄膜,并研究分析了所制备薄膜的结构、力 学及摩擦学性能。

1 实验部分

类金刚石碳薄膜样品制备在中科院沈阳科学仪 器研制中心研制开发的 JGP-560B 多功能磁控溅射 沉积系统上进行。选用腔体内三个靶位置,三靶聚焦 于样品架。其中,两呈中心对称靶位为高纯的石墨靶 (99.95%),通直流电源;另一靶位为高纯金属 Ti 靶 (99.99%)。

基底材料采用 p(100)单晶硅片以及 304 不锈钢 片,镀膜前先对硅片与已经过表面镜面抛光的 304 不 锈钢进行表面清洁,制备过程开始后先对真空腔体预 抽真空 1.0×10⁻³ Pa,对硅片和 304 不锈钢加热至 200 ℃,然后采用射频电源在 Ar 流量为 60 mL/min、气压 为 3 Pa 的条件下,在样品表面沉积金属 Ti 过渡层,靶 功率 200 W,沉积时间 30 min 后关闭射频电源与加热 电源并开启两个石墨靶的直流电源,并调节相应的参 数在过渡层表面制备类金刚石碳薄膜 120 min。直流 溅射沉积类金刚石碳薄膜过程中的主要工艺参数:Ar 流量 15 mL/min,气压 0.25 Pa,直流负偏压-50 V,靶 功率分别为 140 W、160 W、180 W、200 W、220 W。

采用 D8 Advance X 射线衍射仪(XRD)对实验 制备的类金刚石碳薄膜的结构进行分析测定,Renishaw invia Reflex 型 Raman 光谱仪在激光器波长为 532 nm 条件下对类金刚石碳薄膜进行 Raman 光谱 分析,FEI Quanta FEG250 型场发射扫描电子显镜 (FESEM)对类金刚石碳薄膜的断面形貌进行扫描, 并采用 <u>CSPM5500 型原子力显微镜(AFM)</u>对类金刚 石薄膜的表面三维形貌和粗糙度进行表征与检测。 利用 MTS-Nano G200 纳米压入测试平台测定薄膜 的硬度,利用 HSR-2M 往复摩擦试验机对类金刚石 碳薄膜完成摩擦磨损检测。利用 Alpha-Step ZQ 表 面轮廓仪对薄膜的磨痕轮廓进行测定。

2 结果与讨论

2.1 薄膜的结构和形貌

采用 X 射线衍射仪(XRD)对不同溅射靶功率制 备的系列类金刚石碳薄膜进行表征,结果显示不同溅 射靶功率下 XRD 衍射曲线都没有明显的变化,均未显 示任何衍射峰特征,图 1 所示为具有代表性的类金刚 石碳薄膜 XRD 衍射曲线(在溅射靶功率 200 W 时所制 备),可以得出该类薄膜属于典型的非晶态微结构。

图 1 溅射靶功率为 200 W 时类金刚石碳薄膜的 XRD 曲线 Fig. 1 The XRD pattern of the diamond-like carbon film at sputtering power of 200 W

对所制备的类金刚石碳薄膜进行 Raman 光谱测 试,如图 2 所示。将类金刚石碳薄膜的 Raman 光谱 曲线进行 Gaussian 拟合成以 1560 cm⁻¹ 和 1350 cm⁻¹附近为中心所对应的 G 峰和 D 峰。一般认为, D 峰与 G 峰强度积分比 $I_D/I_G \ G$ 峰位及 G 峰半高宽 与类金刚石碳薄膜中 sp³ 键和 sp² 键的相对含量 $\ sp^2$ 团簇尺寸有关, I_D/I_G 值减小、G 峰峰位向低波数漂移 以及 G 峰半高宽的增加对应着类金刚石碳薄膜中 sp³ 键相对含量增加、sp² 键的相对含量减小^[6-10]。

对图中不同溅射靶功率下薄膜的 Raman 光谱作 出 Gaussian, 拟合结果见表 1。可以得出: 溅射靶功 率由 160 W 增到 200 W 时,G 峰位由 1545.3 cm⁻¹ 向 1543.5 cm⁻¹低波数漂移,半高宽由 161.77 cm⁻¹ 增到 165.26 cm⁻¹, $I_{\rm D}/I_{\rm G}$ 由 1.60 减小至 1.38,这些 显示了随着溅射靶功率的增加,薄膜中 sp³键相对含 量的增加与 sp²键相对含量的减少以及 sp²团簇尺寸 减小。而溅射靶功率从 200 W 到 220 W 相关数据表 现为 G 峰由 1543.5 cm⁻¹向 1545.3 cm⁻¹高波数漂 移,半高宽由 165.26 cm⁻¹减小至 160.84 cm⁻¹, $I_{\rm D}/I_{\rm G}$ 由 1.38 增大至 1.62,随着溅射靶功率继续增加, 薄膜中 sp³键相对含量减少,sp²键相对含量增加以及 sp²团簇尺寸增大。

图 2 类金刚石碳薄膜 Raman 光谱曲线

Fig. 2 Raman spectrum curves of diamond-like carbon films

Table 1 Guassian fitting results of Raman spectra of diamond-like carbon films							
功率 (W)	G 峰			D 峰			
	峰位 (cm ⁻¹)	半高宽 (cm ⁻¹)	积分面积	峰位 (cm ⁻¹)	半高宽 (cm ⁻¹)	积分面积	$I_{ m D}/I_{ m G}$
140	1542.8	162.43	306130	1365.3	298.45	490590	1.60
160	1545.3	161.77	402000	1367.9	294.78	644580	1.60
180	1544.7	163.39	420220	1364.4	287.33	608050	1.45
200	1543.5	165.26	427450	1365.7	290.8	588130	1.38
220	1545.3	160.84	350530	1364.7	288.52	568850	1.62

表 1 类金刚石碳薄膜 Raman 光谱的 Guassian 拟合结果

图 3 所示为各溅射靶功率下样品断面 FESEM 图,从图中可看出随着靶功率的增大类金刚石碳薄膜 的碳颗粒团聚尺寸先减小后增加。140 W 时图片显 示为较大的碳颗粒团聚,随着靶功率的增大,颗粒尺 寸逐步减小,而当功率继续增大至 220 W 时,团聚尺 寸明显增大。溅射靶功率增加会导致电势差增大,激 发的 C⁺能量增加,根据浅注入(Sub-implantation)模 型^[11,12],能量达到一定阈值的 C⁺入射到薄膜进入类 金刚石碳薄膜的亚表层,会引起类金刚石碳薄膜局部 密度的亚稳态增加,入射的 C⁺所携带的能量会转移 到附近的碳原子中,促进 sp³键的形成;而较低或更 高能量的 C⁺,由于沉积在表面不进入薄膜或注入到 薄膜较深的内层而不能引起亚表层局部密度的提高, 所以不能形成 sp³键。溅射靶功率由 140 W 向 200 W 增大时,C⁺能量增加 sp³键相对含量增大,团聚颗 粒尺寸逐渐变小,但当 200 W 增大至 220 W 时,C⁺ 能量超过阈值,sp³键相对含量减少,团聚颗粒尺寸 再次变大。从类金刚石碳薄膜沉积厚度来看,图片显 示,随着溅射靶功率的增加薄膜沉积速率加快,但另 一方面从 140 W 至 200 W,sp³键相对含量提升增加 了薄膜的密度,使得薄膜厚度缓慢增加,而当溅射靶 功率升至 220 W 时,sp³键相对含量大量减少以及石 墨靶溅射量的增加使得类金刚石碳薄膜的沉积厚度 快速增加至 0.72 μ m。

采用原子力显微镜(AFM)对所制类金刚石碳薄 膜的表面形貌进行表征,如图 4,不同溅射靶功率下 类金刚石碳薄膜的 AFM 三维图与相对应的表面粗 糙度显示,随着溅射靶功率的上升,表面粗糙度呈现

图 4 小问减劲靶切坐下切关並刚口恢海族的 AFM 三维图 Fig. 4 Three-dimensional AFM models of diamond-like carbon films at different sputtering power a-140 W b-160 W c. 180 W d-200 W e-220 W 下降趋势,当溅射靶功率从 140 W 增加至 200 W,表 面粗糙度由 2.13 下降至 1.78,但继续增大溅射靶功 率至 220 W 时表面粗糙度上升,由 1.78 上升至 2.20,这主要由于高功率条件下石墨靶材表面的放电 现象变得严重而导致的。

2.2 薄膜的力学及摩擦学性能

利用 MTS-Nano G200 纳米压入测试平台测定 薄膜的硬度,为了减少基体对测量的影响,在每个样 品上选择 4 个不同区域,以 Berkovich 金刚石压头压 入固定深度 1000 nm,表 2 为不同溅射靶功率下纳米 压痕硬度及弹性模量。sp³键相对含量上升是类金刚 石碳薄膜硬度与弹性模量提升的关键。溅射靶功率 从 140 W 增加到 200 W 时,sp³键相对含量增大,表 现为硬度与弹性模量增大,在 200 W 时硬度和弹性 模量分别取得最大值,硬度为 11.4 GPa,弹性模量为 129.3 GPa,但当 200 W 增大至 220 W 时,sp³键相对 含量减少,硬度下降为 5.0 GPa,弹性模量下降为 42.5 GPa。

表 2 类金刚石碳薄膜的纳米硬度与弹性模量

Table 2 The nano-hardness and elasticity

	- (1:	1 1:1	1	C:1	
modullus	of diat	nond-like	carbon	tums	

功率 (W)	140	160	180	200	220
H(GPa)	5.2	9.3	10.5	11.4	5.0
E(GPa)	40.6	98.4	125.0	129.3	42.5
H/E	0.128	0.094	0.084	0.085	0.117

采用 HSR-2M 高速往复摩擦磨损试验机对类 金刚石碳薄膜进行摩擦磨损测试,对偶球为直径 5mm的 Si₃N₄磨球,频率为 5 Hz,往复长度为 5 mm, 摩擦时间为 30 min,正载荷为 100 g。图 5 所示为不 同溅射靶功率下类金刚石碳薄膜的摩擦系数随摩擦 时间的变化关系曲线。结果表明,溅射靶功率由 140 W 至 200 W,薄膜的摩擦系数下降明显,由 0.22 降 至 0.17,而当溅射靶功率由 200 W 增加为 220 W 时,薄膜的摩擦系数上升为 0.26。

图 5 不同溅射靶功率下的类金刚石碳薄膜的摩擦系数

Fig. 5 Friction coefficients of the diamond-like carbon films at different sputtering power

对薄膜摩擦测试后的磨痕和对偶球磨斑进行光 学显微镜表征分析(图 6),利用 K = V/SF 公式计算 薄膜磨损率,其中 K 表示磨损率,V 表示磨损体积,F表示加载载荷,S 表示滑动总路程。图 6 显示随着溅 射靶功率的增加,磨痕先变浅再变深。靶功率 140 W 时,薄膜的磨痕深且薄膜剥落严重,其磨损率为 1.4 $\times 10^{-6}$ mm³ (N•m)⁻¹,随着溅射靶功率的增大,薄 膜的磨损率逐渐减小。靶功率 200 W 时,薄膜表面 变得光滑,只表现出轻微的擦伤,磨损率为 5.2×10 ⁻⁷mm³(N•m)⁻¹,但当靶功率继续增大到 220 W 时,从磨痕看出表面出现大量剥落,且磨痕较深,磨损 率变为 1.5×10⁻⁶mm³(N•m)⁻¹。对比于磨斑形貌 图,可以看出随着靶功率的增大,磨斑表面的石墨化 转移膜逐步形成,在靶功率 200 W 时最为明显,但靶 功率 220 W 时转移膜消失。由摩擦磨损结果可以得出,靶功率 200 W 时所制备的薄膜能获得良好的摩

擦学性能,这主要归因于此时薄膜具有密实的结构、 较小的表面粗糙度以及较高的硬度。

图 6 不同溅射靶功率制备的类金刚石碳薄膜的磨痕与磨斑. Fig. 6 Grinding crack and wear spot of the diamond-like carbon films prepared under different sputtering power

a. f-140 W b. g-160 W c. h-180 W d. i-200 W e. j-220 W

3 结论

采用直流磁控溅射技术在单晶硅和 304 不锈钢 基底上,在不同溅射靶功率条件下成功制备出系列的 类金刚石碳薄膜。结果表明,该类薄膜都具有典型的 非晶态微结构特征;随着溅射靶功率的上升,薄膜中 sp³键含量上升,碳颗粒团簇尺寸变小,但当溅射靶功 率到达 220 W时,薄膜中 sp³键相对含量下降,碳颗 粒团簇尺寸增大;随着溅射靶功率的增大,薄膜的硬 度与弹性模量先增大后减小,在 200 W 时薄膜表现 出良好的力学性能,硬度为 11.4 GPa,弹性模量为 129.3 GPa,且具有最低的摩擦系数 0.17 和最小的 磨损率 5.2×10⁻⁷mm³(N·m)⁻¹。

参考文献:

- Neuville S. Quntum electronic mechanisms of atomic rearrangements during growth of hard carbon films[J]. Surface and Coatings Technology, 2011, 206(4),703-726.
- [2] Bewilogua K, Hofmann D. History of diamond-like carbon films-From first experiments to worldwide applications [J]. Surface and Coatings Technology, 2014, 242(0):214-225.
- [3] Ali E, Cristophe D. Tribology of diamond-like carbon films: recent progress and future prospects[J]. Journal of Physics D: Applied Physics, 2006, 39(18):R311.
- [4] Wang Y. J., Li H. X., Ji L., et al. Microstructure, mechanical and tribological properties of graphite-like amorphous carbon

films prepared by unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 2011, 205: 3058-3065.

- [5] Yang S., Li X., Renevier N. M., et al. Tribological properties and wear mechanism of sputtered C/Cr coating[J]. Surface and Coatings Technology, 2001, 142: 85-93.
- [6] Ferrari A. C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095.
- Ferrari A. C., Rodil S. E., Robertson J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides [J].
 Physical Review B, 2003, 67(15): 155306.
- [8] Zhang S. , Zeng X. T. , Xie H. , et al. A phenomenological approach for the I_d/I_g ratio and sp3 fraction of magnetron sputtered a-C films[J]. Surface and Coatings Technology, 2000, 123(2-3); 256–260.
- [9] Cui W. G., Lai Q. B., Zhang L., et al. Quantitative measurements of sp3 content in DLC films with Raman spectroscopy[J]. Surface and Coatings Technology, 2010: 1995-1999.
- [10] Ferrari A. C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B, 2001, 64(7): 075414.
- [11] Kulikovsky V. Mechanical properties of hydrogen-free a-C: Si films[J]. Diamond and Related Materials, 2004, 13: 1350-1355.
- [12] Lifshitz Y., Lempert G. D., rossman E. Substantiation of subplantation model for diamond-like film growth by atomic force microscopy[J]. Physical Review Letters, 1994, 72(17): 2753-2756.