Preparation and properties of DLC/MoS₂ multilayer coatings for high humidity tribology

Xiaoyu Zhao¹, Zhibin Lu¹, Guizhi Wu¹, Guangan Zhang¹,², Liping Wang¹,²,⁴ and Qunji Xue¹

¹ State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
² Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
³ Graduate University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
⁴ Authors to whom any correspondence should be addressed. E-mail: gazhang@licp.cas.cn and lpwang@licp.cas.cn

Keywords: DLC, MoS₂, humidity, multilayer, tribology

Abstract
The DLC/MoS₂ multilayer coatings with different modulus ratios were deposited by magnetron sputtering in this study. The morphology, structure, composition, mechanical properties and tribological properties were investigated using several analytical techniques (FESEM, AFM, TEM, AES, XPS, nanoindentation and high humidity tribological test). The results showed that the well-defined multilayer coatings were composed of densely packed particles in which many nanocrystallines with some kinds of defects were distributed in matrix. The incorporation of oxygen into the lattice led to the degraded chemical stability. The coating’s hardness and elastic modulus were almost in the same range. Moderate improvement on the high humidity tribological properties were obtained, which was important for the extension of the service life of MoS₂ in humid air.

1. Introduction
Molybdenum disulfide (MoS₂) is one of the prototypical two-dimensional (2D) layered materials, where Mo atoms are sandwiched between layers of S atoms [1]. Atoms within each layer are kept together by covalent bonds, while adjacent layers are held together by weak van der Waals forces which lead to easily shear between basal planes of MoS₂, and a resultant excellent lubricity [1, 2]. The outstanding lubrication property of MoS₂ endows itself good performance in vacuum and space environments [1, 3]. However, ground storage is inevitable before launch in space projects and it will deteriorate the lubricated parts for subsequent use in space [4, 5]. When stored in terrestrial atmosphere, the sensitivity of MoS₂ to moisture results in the formation of MoO₃ with increasing shear strength and a degraded endurance life [6, 7]. Finally, a decreased endurance life is expected for aerospace applications, which may bring about wrong evaluation of service life and serious consequences.

Researches of improving the wear performance of MoS₂ in atmospheric condition are in long-running, where changing the orientation of crystalline, addition of other materials and fabricating double-layer or multilayer coatings are the main subjects [1, 3, 6, 8–10]. One of the successful examples is the development of Ti-doped MoS₂ film, known as MoST, which shows more stable friction coefficient and longer wear life than pure MoS₂ film in humid condition, thus brings itself a promising application in dry drilling and machining [11, 12]. Moreover, the combination of diamond-like carbon (DLC) and MoS₂ has great potential to improve the performance of MoS₂ in atmosphere environment [9]. DLC has been used as protective coatings in many applications because of its low friction, high wear resistance, hardness and chemical inertness [13]. However, hydrogen-free DLC coatings generally exhibit high friction because of the strong adhesion which is attributed to the interaction of covalent σ bonds under ultra-high vacuum (UHV) sliding condition and low friction resulting from the passivation of σ bonds in humid air [14]. Moreover, multilayer structure with soft and hard materials

© 2016 IOP Publishing Ltd
can further enhance the wear resistance [15]. Therefore, a multilayer structure of DLC and MoS2 coating is designed to explore the possibility of improved humidity resistant property of MoS2.

This paper reports on a series of DLC/MoS2 multilayer coatings deposited on Si wafer and 304 stainless steel by magnetron sputtering. The morphology, microstructure, composition, mechanical properties and tribological properties were investigated. A reduced humidity sensitivity and improved wear resistance of MoS2 were observed, suggesting potential candidates for aerospace industries.

2. Experimental details

DLC/MoS2 multilayer and MoS2 monolayer coatings were deposited by Teer UDP 650 closed-field unbalanced magnetron sputtering system employing four targets. One C target, one MoS2 target and two Cr targets were used during sputtering. Substrates including Si (100) wafer and 304 stainless steel were ultrasonically cleaned by acetone and ethanol for 15 min subsequently before mounting in the chamber. After the chamber was pumped to less than 1×10^{-3} Pa, substrates and targets were cleaned with Ar+ ions for 15 min to remove the surface contamination. During the deposition processes, the argon flow rate was kept at 16 sccm. To improve the adhesion to substrates, a Cr interlayer was deposited prior to the deposition of multilayers with a sputtering current 3.0 A for 400 s, followed by a gradient interlayer. During the deposition of DLC layer, a small number of Cr was introduced to reduce the high residual stress and increase the toughness. The sputtering current was 3.5 A for C target, while for Cr target the current was 0.38 A. The target current of MoS2 was 0.8 A during the deposition of MoS2 layer. A series of DLC/MoS2 multilayer coatings about 1000 nm were deposited through alternately changing the target currents. Table 1 depicts the design parameters of DLC/MoS2 multilayer coatings with various modulation ratios and corresponding deposition times. Additionally, a MoS2 monolayer coating with a thickness of 1000 nm was deposited as reference sample.

The surface morphology and cross-section structure of coatings were investigated by Hitachi SU8020 field-emission scanning electron microscope (FESEM). Moreover, the detailed morphologies of the coatings were measured by Benyuan CSPM4000 atomic force microscopy (AFM). The crystalline structure was characterized by glancing incidence x-ray diffraction (GIXRD, Philips X’Pert Pro) operating with Cu Kα radiation at 1° angle of incidence. In addition, one cross-section was further examined by FEI Tecnai F30 transmission electron microscope (TEM) to obtain the information of microstructure. Elemental depth profiling of selected as-deposited DLC/MoS2 multilayer coating was performed by Auger electron spectroscopy (AES, PHI-700, ULVAC-PHI, Japan). The elastic modulus and hardness of coatings were measured by MTS NANO G200 nanoindentation tester with six measurements in each sample.

Considering the sensitivity of MoS2 to moisture, a survey of changes in chemical state and composition is essential. Damp heat test (80% relative humidity at 40 °C, 720 h) was carried out to investigate the stability of coatings and the oxidative parts. X-ray photoelectron spectroscopy (XPS) was performed by a VG ESCALAB 210 spectrometer to investigate the changes in coatings before and after the damp heat test.

The tribological performance was evaluated against a GCr15 ball of 4 mm diameter under a constant load of 2 N. The tests were conducted at room temperature and at 90 ± 5% relative humidity by using a reciprocating type ball-on-disk tribometer (CSM, Tribo-S-D-0000). The sliding frequency, amplitude and reciprocating cycle number were maintained at 5 Hz, 5 mm and 20 000 cycles, respectively. After wear tests, the wear volumes were measured by Alpha-Step D-100 profilometer. Raman experiments were carried out to investigate the differences of as-deposited coatings, wear tracks and wear scars using a LabRameHR800 Jobin-Yvon spectrometer with wavelength of 532 nm as excitation source. The wear tracks and wear scars on the balls were observed by Tescan Mira3 SEM equipped with an Energy Dispersive Spectrometer (EDS).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Modulation ratio</th>
<th>Periodic Thickness (nm)</th>
<th>DLC Deposition time (s)</th>
<th>DLC Thickness (nm)</th>
<th>MoS2 Deposition time (s)</th>
<th>MoS2 Thickness (nm)</th>
<th>Total Thickness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>1:3</td>
<td>100</td>
<td>296</td>
<td>25</td>
<td>805</td>
<td>75</td>
<td>1000</td>
</tr>
<tr>
<td>S5</td>
<td>1:5</td>
<td>100</td>
<td>197</td>
<td>16.7</td>
<td>894</td>
<td>83.3</td>
<td>1000</td>
</tr>
<tr>
<td>S7</td>
<td>1:7</td>
<td>100</td>
<td>148</td>
<td>12.5</td>
<td>939</td>
<td>87.5</td>
<td>1000</td>
</tr>
<tr>
<td>S9</td>
<td>1:9</td>
<td>100</td>
<td>118</td>
<td>10</td>
<td>966</td>
<td>90</td>
<td>1000</td>
</tr>
<tr>
<td>MoS2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1. Design parameters of DLC/MoS2 multilayer and MoS2 monolayer coatings.
3. Results and discussion

3.1. Morphology and structure

Figure 1 shows the surface morphologies of DLC/MoS$_2$ multilayer and MoS$_2$ monolayer coatings measured by FESEM and AFM. All coatings display a densely cluster shape morphology. Uniformly distributed particles can be clearly seen in these figures. The inserted AFM topographic images show three dimensional views of coatings, of which scanning area is 5 μm \times 5 μm. The images display a homogeneous topography with hills and valleys of different heights and distances. Whereas a roughness average (Ra) of 1.41 nm was determined for the MoS$_2$ monolayer coating, the Ra of multilayer coatings were measured to be 3.65 nm, 2.86 nm, 3.23 nm and 2.68 nm for S3, S5, S7 and S9, respectively. The film roughness is mainly determined by the size and of the aggregated MoS$_2$ particles and the preferred orientation of MoS$_2$ crystals because of the amorphous property of DLC. The greater the aggregation and the preferred orientation of the MoS$_2$, the higher the Ra.

The cross-sectional images of all coatings are presented in figure 2. The multilayer coatings show well-defined layered structure with interfaces between adjacent layers easily distinguished. As indicated by arrows and texts in the pictures, the black zones are DLC layers and the grey zones are MoS$_2$ layers except the interlayers at the bottom. The interlayers are columnar structure, whereas the DLC layers are featureless and MoS$_2$ layers are composed of densely packed particles.

The GIXRD patterns of all samples are depicted in figure 3. Coatings with different modulus ratios and MoS$_2$ monolayer coating have same preferential orientations which only differ slightly in intensity, along with diffuse peaks from other reflection groups. The scattering angle is about 12.65$^\circ$ which is inconsistent with the (002) reflection of 2H-MoS$_2$ (14.37$^\circ$) and/or the (003) reflection of 3R-MoS$_2$ (14.533$^\circ$) [16]. Generally, this peak is assigned to (002) basal plane diffraction peak and the position shift arises from lattice expansion which is common in sputter deposited coatings [17]. Defects like vacancies, impurities and dislocations generate locally strong interactions between MoS$_2$ layers and inhibit ordered growth due to the weak bonding between the S-Mo-S layers in the MoS$_2$ structure [18]. This results in a random stacking layer structure, thus an increase of the lattice spacing [16]. Moreover, the broadening of the (002) peak indicates nanoscale crystals and some disorder in the crystals [19].

The TEM cross-section images of S7 is displayed in figure 4(a). The multilayer structure is well-defined with distinct interfaces. The white regions are DLC layers with a thickness of ~17 nm, while the dark regions are MoS$_2$ layers with ~83 nm thickness. The interfaces between the two types of layers show somewhat blurring that is caused by diffusion between DLC and MoS$_2$ components, which is shown in figure 4(b). In figure 4(b), the DLC layer is amorphous, while in MoS$_2$ layer the arrangement of MoS$_2$ basal plane is parallel to the interface in some degree accompanying with some defects and distortion regions. The curve of the interface contributes to the wave-like morphology of MoS$_2$ plane in turn. In addition, there are several types of crystal defects spotted in figure 4(c), such as bending defects (labeled B) where the basal plane is bended, fork defects (labeled F) where the basal plane forks into two, insetted defects (labeled I) where one plane insects between two others as well as
Figure 2. The cross-sectional FESEM images of the as-deposited coatings: (a) S3—DLC/MoS$_2$ = 1:3; (b) S5—DLC/MoS$_2$ = 1:5; (c) S7—DLC/MoS$_2$ = 1:7; (d) S9—DLC/MoS$_2$ = 1:9; (e) MoS$_2$—MoS$_2$ monolayer coating.

Figure 3. GIXRD patterns of coatings: (a) S3—DLC/MoS$_2$ = 1:3; (b) S5—DLC/MoS$_2$ = 1:5; (c) S7—DLC/MoS$_2$ = 1:7; (d) S9—DLC/MoS$_2$ = 1:9; (e) MoS$_2$—MoS$_2$ monolayer coating.

Figure 4. The cross-sectional TEM image of S7: (a) multilayer structure; (b) the parallel basal planes marked by parallel dash lines and defects marked by round dash lines; (c) several crystal defects.
expansions of MoS2 layers, in which some defects are observed by others, too [20]. Deposition rate has a significant influence on the orientation of MoS2 basal planes [21]. Optimal deposition rate will yield the strongest (002) orientation. Slower deposition rate not only inhibits (002) growth due to desorbing of incident atoms but also increases the concentration of contaminant atoms disrupting (002) growth. Considering the plentiful defects (O substitutions, vacancies) on the basal plane, the chemical reactivity of (002) plane is enhanced. Hence, a more intense competition occurs between (002) basal plane and (100) edge plane, which generates the morphology shown in figures 4(b) and (c).

Auger electron spectroscopy has become the most common method in sputter depth profiling for surface analysis. During the sputter process, the change of composition and topography in the surface introduced by beam/sample interactions will influence the depth resolution, so do other factors like ion-bombardment-induced roughing, atomic mixing and electron escape depth [22]. The direct evidence is a decreasing amplitude of the elemental concentration with increasing sputtering time. The AES depth profile of S7 in figure 5 shows the concentration-depth profile of a typical multilayered structure. Overall, the alternating of Mo and S-enriched and C-enriched layers demonstrates the presence of a well-defined multilayered structure. Compared with S, the higher concentration of Mo in the spectra is probably due to the instruments and the differences of sensitivity factors between element and compound. The synchronization of Mo and S concentration is a result of the preferential resputtering of S with respect to Mo [3]. In fact, the deposition speeds of MoS2 and C are almost same in our experiments, so the periodical undulation of O concentration originates from the different reactivity of O in the different deposition stage, as O substitution is often seen in sputtered MoS2 coatings. Generally, the depth resolution will decrease with the increasing sputter depth, which is due to preferential sputtering and the variation of sputtering yield with orientation and surface roughening et al [23], which leads to the decrease of the concentration amplitude. The diffusion in the interface is a result of the impact of sputtering particles, because Cr content is about zero in MoS2 layer. This result is consistent with the observation in figure 4(b).

3.2. Mechanical properties

In order to evaluate the mechanical properties of the DLC/MoS2 multilayer and MoS2 monolayer coatings, nanoindentation experiments were performed and corresponding results are shown in figure 6. Typically, the hardness of transition metal dichalcogenides (TMD) is in the range of 0.3 to 2 GPa, which is much lower than that of DLC [24]. However, the hardness of sputtered MoS2 is 7.9 GPa in our tests, which is much higher than that of the traditional MoS2. A dense and compact structure contributes to the high hardness of MoS2 film accompanying with the crystal defects which inhibit the dislocation motion [25]. Similarly, in the building of MoST film, a high hardness is ascribed to the lattice distortion of MoS2 [26]. The combination MoS2 and DLC shows weak influence on mechanical properties. The elastic modulus of coatings is in the range of 114 GPa to 97 GPa, and the hardness varies from 8.6 GPa to 7.9 GPa. Overall, the elastic modulus decreases with the thickness of DLC layer slightly, while the hardness varies little with irregular fluctuation.

3.3. Damp heat test

Figure 7 illustrates the XPS fine scan spectra obtained from S7 and MoS2 monolayer coatings as-deposited and after the damp heat test. In figure 7(a), the Mo 3d spectrum recorded on the as-deposited MoS2 monolayer coating surface exhibits two peaks at 228.7 eV and 231.8 eV, corresponding to the Mo 3d5/2 and Mo 3d3/2 in MoS2. The peaks observed at 227.9 eV and 231.0 eV can be identified to be the Mo 3d5/2 and Mo 3d3/2 spectra.
line in MoS$_2$−xO$_x$, which is different from the results of others who assigned the peaks to MoS, as the sputtered-deposited `MoS$_2$' films are composed of pure MoS$_2$ phase and MoS$_2$−xO$_x$ phase due to oxygen substituted for sulfur into the MoS$_2$ hexagonal lattice $^{[27–29]}$. In addition, no peak around 336 eV is found, which suggests the amount of MoO$_3$ is too few to detect. The O 1 s spectrum in figure 7(b) can be fitted into two peaks. The peak located at 532.3 eV can be ascribed to chemically adsorbed oxygen, and the peak located at 530.1 eV suggests the Mo-O bonds which verify the oxygen substitution rather than surface oxidation $^{[30, 31]}$. The spectra of S7 in figures 7(c) and (d) are similar to that of MoS$_2$ monolayer coating. MoS$_2$ monolayer and S7 coatings were stored at 40 °C, 80% relative humidity for 1 month to investigate the change in composition. The differences are presence of peaks from MoO$_3$ accompanying with the decreasing intensity of peaks correspond to MoS$_2$−xO$_x$. Based on the FESEM and XRD observations, the surface of MoS$_2$ layer consists of densely fine particles with numerous boundaries and certain edge sites directly exposed to the environment. Though a dense structure can inhibit the penetration of O$_2$ which leads to the limited oxidation of edge sites of MoS$_2$, it should be noted that the MoO$_3$ is mainly from the transformation of MoS$_2$−xO$_x$, as the portion of MoO$_3$ plus the residual MoS$_2$−xO$_x$ is almost equal to that of MoS$_2$−xO$_x$ in as-deposited coating in terms of the content of Mo, which is shown in table 2. This result suggests that the chemical reactivity of MoS$_2$−xO$_x$ is higher than that of the edge sites of MoS$_2$. Moreover, a new peak around 533 eV appear in the spectra of O 1 s in figures 7(f) and (h), which can be ascribed to the signal of absorbed water as samples are stored in high humidity environment for a month before XPS characterization $^{[32]}$.

Figure 6. The elastic modulus and hardness of all coatings: (a) S3—DLC/MoS$_2$ = 1:3; (b) S5—DLC/MoS$_2$ = 1:5; (c) S7—DLC/MoS$_2$ = 1:7; (d) S9—DLC/MoS$_2$ = 1:9; (e) MoS$_2$—MoS$_2$ monolayer coating.

Figure 7. XPS spectra of the as-deposited MoS$_2$ monolayer coating and S7 accompanying with the results after the damp heat test: (a) Mo 3d of as-deposited MoS$_2$ monolayer coating; (b) O 1s of as-deposited MoS$_2$ monolayer coating; (c) Mo 3d of as-deposited S7; (d) O 1s of as-deposited S7; (e) Mo 3d of MoS$_2$ monolayer coating after damp heat test; (f) O 1s of MoS$_2$ monolayer coating after damp heat test; (g) Mo 3d of S7 after damp heat test; (h) O 1s of S7 after damp heat test.
3.4. Friction and wear properties

MoS₂ is vulnerable to humidity, which results in poor tribological properties. When tribological tests are performed at ∼90% relative humidity a steady-state friction coefficient for MoS₂ is not realistic. Figure 8(a) presents the friction coefficients which show obvious fluctuation as the test proceeds. The friction coefficients of S₃ increases continuously after the running-in period, while a steady stage appears for S₅. With the thickness of DLC layer decreasing, a more severe running-in is observed. As seen in S₇ and S₉, the running-in periods need more time and the friction coefficients are more unstable, which is followed by a sharply decrease later. Different from others, the friction coefficient of MoS₂ monolayer coating increases steadily without great fluctuation. The mean friction coefficients and wear rates are shown in figure 8(b). From the results it can be concluded that an introduction of DLC layer is beneficial to reduce the wear, which is at the sacrifice of running-in period and a steady friction coefficient. As the thickness of DLC layer increase, the wear rates decrease, too. Meanwhile, the friction coefficient keeps low and steady.

To obtain more insights into the friction and wear mechanism of the coatings in high humidity condition, Raman spectra of as-deposited coatings, wear tracks and wear scars of MoS₂ monolayer and S₇ coatings were carried out. As shown in figure 9(a), there are only two prominent peaks at ∼373 cm⁻¹ (E₁₂g mode) and ∼402 cm⁻¹ (A₁g mode) of spectra of as-deposited MoS₂ monolayer coating. The in-plane opposite vibration of two S atoms with respect to the Mo atom is responsible for E₁₂g mode, and the A₁g mode is attributed to the out-of-plane vibration of S atoms in opposite directions [33]. The absence of Raman signals (750–1000 cm⁻¹) due to MoO₃ indicates the content of MoO₃ is below the detection limit, which is consistent with the result of XPS [34].

The spectrum of the wear track is similar to that of as-deposited coatings without obvious peak corresponding to MoO₃. However, the presence of a sharp peak at ∼920 cm⁻¹ suggests the formation and accumulation of the oxidation product of MoS₂ on the surface of counterpart during the test. Compared with the spectrum of wear track of MoS₂ monolayer coating, a weak peak appearing between 1300 and 1700 cm⁻¹ which belongs to the overlapping of D and G bands for DLC suggests the existence of carbon on the surface [35]. While much stronger signals originating from DLC in the wear scar of S₇ indicate the enrichment of carbon which is beneficial to reduce wear.

After the tribological tests, the wear tracks and scars were observed by profilometer and SEM. The corresponding compositions were measured by EDS. As shown in figure 10(a), there are many rough grooves on the wear track of MoS₂ monolayer coating, which indicates abrasive wear due to the formation of harder particles. More specific information of the wear track is shown in the partial enlarged drawing. Delamination of the film on sides of grooves suggests the brittleness of MoS₂ and weak resistance to crack propagation, which is also supported by the deep and narrow valley depicted in the wear track profile. In addition, as shown in figure 10(b), a transfer film is formed with loose wear debris around the middle zone on the counterpart.

Table 2. The content of different Mo compounds in MoS₂ monolayer coating and S₇ as-deposited and after damp heat test.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MoS₂</th>
<th>MoSₓO₂₋ₓ</th>
<th>MoO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS₂ (as-deposited)</td>
<td>80.70%</td>
<td>19.30%</td>
<td>—</td>
</tr>
<tr>
<td>S₇ (as-deposited)</td>
<td>82.30%</td>
<td>17.70%</td>
<td>—</td>
</tr>
<tr>
<td>MoS₂ (after damp heat test)</td>
<td>80.50%</td>
<td>6.20%</td>
<td>13.30%</td>
</tr>
<tr>
<td>S₇ (after damp heat test)</td>
<td>79.88%</td>
<td>5.98%</td>
<td>14.14%</td>
</tr>
</tbody>
</table>

Figure 8. The tribological performance of all coatings: (a) the friction coefficients; (b) the average friction coefficients and wear rates.
figure 10(c), the number of grooves of S7 are fewer, but the width is larger and more wear debris are distributed outside of the wear track. In the enlarged picture, a smoother surface with the absence of delamination of the film is observed. The wear track profile of S7 presents a shallower valley, which may be due to the enhanced carrying capacity and crack resistance resulting from the multilayer interfaces. The transfer film of S7 in figure 10(d) is surrounded by wear debris out of sliding directions, unlike a round-like shape of MoS2 monolayer coating. This implies that the incorporation of DLC layer accelerates the gather of wear debris to form transfer film, which can also be demonstrated by the larger area of packed transfer film. Meanwhile, the accumulation produces more concentrated grooves with the feature of fewer numbers. The EDS results of labeled selected areas of wear tracks and wear scars are shown in table 3. Due to the formation of MoO3, the counterballs are greatly worn, leaving in abundant Fe on the wear tracks. The failing detection of O suggests the good oxidation resistance of sample MoS2 monolayer coating and S7. Even though oxidation happens, it’s limited to the superficial part and doesn’t penetrate to the bulk. However, a number of O is observed in their transfer films, indicating the oxidation of MoS2 and the generation of iron oxide. The difference in O content between the wear track and transfer film may be explained by the density, for the film beneath the wear track being densely packed and the transfer film being loose with many macro boundaries. In the wear track of S7, C becomes the most abundant element by a replacement of Fe, and a lower S/Mo ratio is found, too. In the transfer film of MoS2 monolayer coating, the content of Mo plus S is much less than that in S7 which is also accompanied with a preference of C. However, the same loose structure results in the excessive oxidation of the transfer film of S7.
From the analysis above, we can get that the oxidation happens mainly in the transfer film during the tribological test. The introduction of DLC layer leads to the abundance of C which play a role in stabilizing the transfer film and reducing the wear.

To further explore the interaction of friction interface, the surfaces of transfer films were characterized by XPS and corresponding results are shown in figure 11. The peaks around 365.5 eV corresponding to MoO$_3$ are easily observed and the main source of XPS signals. While the peaks from MoS$_2$ are hard to distinguish. This indicates that the surface of wear scars is mainly composed of MoO$_3$ and the interface interaction occurred between MoO$_3$ and the coating. In figure 11(b), the peaks around 168 eV are originated from the S$^{6+}$, which suggests the oxidation reaction below occurs.

$$2\text{MoS}_2 + 4\text{H}_2\text{O} + 9\text{O}_2 \rightarrow 2\text{MoO}_3 + 4\text{H}_2\text{SO}_4$$ (1)

The sputtered-deposited ‘MoS$_2$’ films are mixed of pure MoS$_2$ phase and MoS$_{2-x}$O$_x$ phase [29]. Edge sites at steps within basal planes, along with the domain boundaries, are active sites vulnerable to oxidation [36]. Though the MoS$_2$ are oxidized at room temperature, the oxides removed by sliding lead to a negligible effect on the friction coefficient [3]. In sliding process, MoS$_2$ wear debris are transferred to the counterpart. When the environment humidity increases, though the contribution of water to MoS$_2$ oxidation is limited, more adsorbed water changes the shear strength of the interface, which results in an increase in friction [37]. The adsorption of water on defect sites has a tendency to form H-bonded network which can greatly increase the interface interaction [38]. At low humidity, the dimerization of N$_2$ and H$_2$O disturbs the network’s formation. As the humidity increases, the interaction of N$_2$ and H$_2$O mainly occurs in the atmosphere, not at the defect sites, so a water linkage is formed. The friction of MoS$_2$ at ambient temperature relates to not only the amount of water in the environment but also the amount of diffused water in the bulk [3]. Water gradually penetrates into the bulk as the tests proceed. This phenomenon can increase the friction and wear, too. The incorporation of carbon reduces the portion of MoO$_3$ and the scale of H-bonded network, therefore the wear rate of multilayer is lower than that of MoS$_2$ monolayer coating.

| Table 3. EDS of related elements of wear tracks and transfer films. |
|-----------------|-----|-----|-----|-----|-----|
| | Mo | S | O | C | Fe |
| wear track (MoS$_2$) | 17.0% | 31.5% | 0.0% | — | 51.5% |
| transfer film (MoS$_2$) | 6.4% | 13.1% | 32.1% | — | 48.4% |
| wear track (S7) | 15.4% | 20.5% | 0.1% | 38.0% | 26.0% |
| transfer film (S7) | 2.8% | 6.1% | 29.5% | 14.2% | 47.4% |

Figure 11. XPS spectra of the transfer film of MoS$_2$ monolayer coating and S7: (a) Mo 3d; (b) S 2p.
4. Conclusion

A series of DLC/MoS2 multilayer and MoS2 monolayer coatings were fabricated by closed-field unbalanced magnetron sputtering system. The coatings show (002) orientation with many defects observed in TEM images. The modulus ratios have little influence on the hardness and elastic modulus. There is a certain degree of oxygen doped into MoS2 layer forming the MoS2–xO phase which is easier to be oxidized in damp heat test and leads to a degraded performance. The incorporation of DLC layer can moderately decrease the wear rate compared with the MoS2 monolayer coating, indicating promising potentials to enhance the performance in atmospheric environment. The better tribological properties of multilayer coatings are attributed to a reduced portion of MoO3 and the H-bonded network inhibited by carbon.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 21373249 and 51322508).

References

[37] Zhao X and Perry S S 2010 The Role of Water in Modifying Friction within MoS₂ Sliding Interfaces ACS Appl. Mater. Interfaces 2 1444–8