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a b s t r a c t

For a piezoelectric tube scanner (PTS), this paper proposes an improved direct inverse tracking control
algorithm and apply it to an atomic force microscope (AFM) to accomplish high-speed scanning tasks.
That is, to enhance the high-speed tracking control performance of a PTS, an improved direct inverse
rate-dependent Prandtl–Ishlinskii (P–I) model is firstly constructed, which includes a polynomial module
to eliminate the structure nonlinearity. Based on the model, a practical feedforward control law is then
designed to implement high-speed tracking control for a high-frequency trajectory with strong robust-
ness, which presents the advantages of high-speed response, simple structure and convenient implemen-
tation. Subsequently, the designed feedforward law is combined with a feedback component, and the
combined control strategy is employed in an AFM to accomplish fast imaging tasks. Numerous experi-
mental results are then collected, which convincingly demonstrate the superior performance of the pro-
posed practical model/control scheme.

� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric actuators are playing an important role in
nanotechnology due to their good performance [1–5] in
micro/nano scale positioning and signal tracking. Different from
certain integrated piezo-flexural mechanisms [6], a piezoelectric
tube scanner (PTS) provides 3 degrees of freedom (DOF) displace-
ments and presents such obvious advantages as low cost, simple
structure, convenience for function extension, and so on.

Commonly employed in an atomic force microscope (AFM) [7]
as a scanner, a PTS contributes a lot in micro/nano scale imaging
and manipulations [8–12]. An AFM in contact constant-force mode
works in the following way (see Fig. 1): first, a bendable cantilever
with a rigid probe is placed above the sample surface; then a PTS is
actuated by two scanning signals to move in horizonal direction,
simultaneously actuated in the vertical direction to keep relative
displacement between the tip of the probe and the sample as a
constant; with the sample surface ’disturbance’ signal recorded
by a laser launch/detection system, and together with all the scan-
ning signals, a complete vivid micro/nano scale surface image is
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 finally obtained. Considering the requirement of high-speed, high
precision AFM scanning, it is highly required to design practical
control laws, which enable a PTS to track high-frequency trajecto-
ries, so as to implement fast imaging tasks. Unfortunately, the non-
linear behavior of a PTS, such as hysteresis, creep, vibrations,
modeling error and rate-dependent behavior, largely reduces its
positioning performance [8], and then makes its control a very
challenging problem [9].

When designing control strategies for a PTS, feedback control is
always the first choice, where an linearized model is usually iden-
tified through experimental data, based on which, distinct feed-
back approaches can be adopted to construct proper controllers.
For examples, Das et al. apply a double resonant controller in
[10] to damp out the first resonant mode of the PTS and increase
the closed-loop bandwidth; an optimal linear quadratic Gaussian
(LQG) controller with a vibration compensator is designed by
Habibullah et al. in [11] for the same purpose; Rana et al. employ
an improved model predictive control (MPC) scheme in [12] to
achieve high-speed scanning performance. Although good tracking
accuracy may be achieved by a well-designed feedback controller
alone, a phase-lag between the control input and the plant
response usually exists. Besides, large sensor noises or modeling
error can possibly lead to unacceptable tracking error or even
system instability, especially when tracking trajectories with
sufficiently high frequencies.
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Fig. 1. Schematic of an AFM system.
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Compared with feedback control, a feedforward controller is
promising to provide a simpler and more effective way for high-
frequency trajectory tracking control problem. Recently, the mod-
eling and feedforward control problem for a PTS has received con-
siderable interest. Prandtl–Ishlinskii (P–I) model [13–15] is one of
the most widely used hysteresis models for nonlinearity compen-
sation. Its inversion can be analytically calculated and it is also of
P–I form [6,16]. Ang et al. in [16] propose a rate-dependent modi-
fied P–I operator to compensate the hysteresis nonlinearity at
varying driving frequency. Qin et al. propose a direct inverse
rate-dependent modeling approach, which can be directly derived
from experimental data [6], so as to avoid complex inversion calcu-
lations. Recently, researchers try to combine various feedforward
algorithms with feedback control law to achieve satisfactory con-
trol performance [17]. For examples, Leang et al. improve the
tracking and positioning performance by adding a repetitive con-
troller to the inverse feedforward hysteresis compensator in [18],
and in [19], Leang and Devasia integrate the high-gain feedback-
controller with a feedforward component to compensate the
system vibration.

Inspired by the recent results of hybrid feedforward/feedback
control structure [20], this paper proposes a practical feedback
and feedforward combined control strategy for a PTS to elimi-
nate/reduce the effects of nonlinear hysteresis and external distur-
bance, and then apply it to an AFM to accomplish high-speed
imaging tasks. Specifically, we first introduce a polynomial module
into the direct inverse P–I model to set up an improved rate-
dependent model, which describes the characteristics of the PTS
successfully. After identifying the system parameters, a compact
feedforward control law is then constructed and combined with
a standard feedback control law to form a practical control scheme
with satisfactory performance. Subsequently, the control strategy
is utilized on the AFM system, which, together with the spiral scan-
ning pattern [21,22], successfully accomplishes high-speed imag-
ing mode. Finally, some experimental results are collected to
analyze the performance of the proposed control strategy. The con-
tribution of the paper lies in the following aspects: i. a straightfor-
ward, yet accurate model is set up to describe the rate-dependent
dynamics of the system, where a polynomial module is firstly
introduced into the existing P–I model to provide better descrip-
tion of the system characteristics, whose accuracy is supported
by experimental analysis; ii. a practical feedforward control strat-
egy is proposed for the PTS, which presents the advantages of sim-
ple structure, easy implementation, and satisfactory performance;
iii. the recently developed spiral scanning pattern is adopted into
the AFM imaging system for high-speed scanning tasks.

The reminder of this paper is organized as follows. Section 2
introduces an improved direct inverse rate-dependent P–I model.
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Section 3 describes the design of a compact feedforward control
law and the overall control strategy in details. Section 4 provides
sufficient experimental results and analysis to demonstrate the
performance. Section 5 draws the conclusions.

2. Improved inverse rate-dependent model

As mentioned above, the nonlinear behavior of a piezoelectric
tube scanner is quite complex, including hysteresis, creep, rate-
dependent behavior, structural vibration, and so on [8]. As gener-
ally known, a P–I model is one of the most widely adopted pure
phenomenological models which successfully describes the com-
plex nonlinear behavior of a piezoelectric actuator. Therefore, in
this research, we utilize P–I model to depict the behavior of the
studied PTS.

2.1. Direct inverse rate-dependent P–I model

Considering the mathematical formulation, the direct inverse
P–I model can be derived and expressed as follows [6,16]:

ûðtÞ ¼ wT
h �Hr½SðyÞ�ðtÞ ¼

Xn
i¼1

whiHri½SðyÞ�ðtÞ ð1Þ

where yðtÞ is the output of the PTS, ûðtÞ is the modeled control input
of the PTS relative to the actual control input uðtÞ;n is the number of
thresholds, and r ¼ ½r1; r2; . . . ; rn�T is the threshold vector where we
adopt the thresholds in the form of ri ¼ ði� 1Þ=maxfjyðtÞjg;
i ¼ 0; 1; . . . ; n.

In addition, Hr ½��ðtÞ ¼ ½Hr1½��ðtÞ; Hr2½��ðtÞ; . . . ; Hrn½��ðtÞ�T represents
the elementary backlash operator vector, and wh ¼
½wh1; wh2; . . . ; whn�T is the weight vector [6]. As can be seen from
(1), the direct inverse P–I model is essentially the linear superposi-
tion of all the elementary backlash operators with different thresh-
olds and weight values. Moreover, SðyÞ represents the saturation
operator aiming at reshaping the hysteresis loop, which can be
regarded as taking the form of multiple one-sided dead zone
operators, or a polynomial formulation adopted in [6] as follows:

SðyÞ ¼ cmym þ cm�1ym�1 þ � � � þ c1y ð2Þ
with the vector form denoted as c ¼ ½c1; c2; . . . ; cm�T. Yet, it should
be noted that this model is still rate-independent, which brings
much difficulty for practical applications.

Considering inputs of different frequency, the work of Ang et al.
and Tan et al. can be brought into model (1) to make it valid for a
wide range of frequencies. As shown in [6,16], the rate-dependent
behavior can be described in the way that the weights vary linearly
against the control input rate while keeping other components
unchanged. Based on this fact, (1) is rewritten into the direct
inverse rate-dependent P–I model [6]:

ûðtÞ ¼ ðk _yðtÞ þ bÞT �Hr ½SðyÞ�ðtÞ ¼
Xn
i¼1

ðki _yðtÞ þ biÞHri½SðyÞ�ðtÞ ð3Þ

where k ¼ ½k1; k2; . . . ; kn�T and b ¼ ½b1; b2; . . . ; bn�T are the slope and
offset coefficients.

2.2. A polynomial module

After an experimental trial-and-error process, it can be found
that the rate-dependent P–I model is unable to fully describe the
overall nonlinear behavior, especially the nonlinearities caused
by modeling error and physical structure. There exists one ampli-
tude difference. Considering the fact that the P–I model is purely
a phenomenological model, it is reasonable to add some extra
modules into the existing P–I model with serial or parallel

m.co
m.cn



H. Lu et al. /Mechatronics 31 (2015) 189–195 191
structure. Hereby, a module G is designed with the following poly-
nomial expression:

G : buGðtÞ ¼ g1bu þ g2bu2 þ g3bu3: ð4Þ
This polynomial module is designed to deal with such factors

including modeling uncertainty, measurement error, and so on.
Theoretically, it can be designed in any complex forms. Yet, the
more complex it is, the more calculations the identification proce-
dure will need. After sufficient experimental study, a polynomial
form is utilized for the module G, whose effectiveness will be sup-
ported by the experimental results presented in Section 4.

After combining the polynomial module with the inverse P–I
model in a serial form, an improved direct inverse rate-
dependent P–I model can be derived in the following form:

buGðtÞ ¼ GðwT
h � Hr ½SðyÞ�ðtÞ Þ: ð5Þ

Finally, the uncertain parameters to be identified turn to be k, b,
c and g, where g ¼ ½g1; g2; g3�T denotes the polynomial module
coefficient vector.
1 It should be pointed out that the spiral scanning pattern introduced in [21,22],
instead of the traditional one, is employed in the high-speed imaging mode to further
increase scanning speed.
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3. Practical feedforward control strategy

3.1. Data preprocessing procedure

Based on the analysis of the input signals and the utilized posi-
tion sensor, we take the following data preprocessing procedure:

� The control input signals for a PTS could be in a variety of forms.
In traditional AFM imaging application, a periodic triangular
signal is generally applied to its X-axis together with a staircase
signal applied to its Y-axis [11]. However, there exist lots of
problems in this scanning pattern: oscillations at the turning
points will easily lead to system vibration and instability; this
pattern is also time costing. Based on this fact, we apply both
amplitude varying sinusoidal signals to the X- and Y-axis to
achieve better imaging performance without any oscillation at
the turning points (see [21,22]). Then, this spiral scanning pat-
tern produces no waste data and it costs less time.

� The PTS output signals generally contain much noise. To deal
with this problem, we apply a medium filter to the output data,
which may change the signal’s phase as well.

� As for parameter estimation, after some trial-and-error experi-
ments, the initial hysteresis loop is abandoned, and the middle
part of the data is utilized to conduct identification, so as to
achieve more stable results.

� Alignment for data. In our platform, a high-precision capacitive
sensor is utilized to measure the micro displacement. Instead of
repeatedly setting the output to zero by users, the output data is
aligned symmetric around zero through some data translation
procedure.

3.2. Identification process

The parameters to be identified through experimental data are
the slope coefficient vector k, the offset coefficient vector b, the
saturation operators coefficient vector c and the polynomial mod-
ule coefficient vector g. Inspired by the identification method in
[6], we separate the identification process into three steps: Step
I. identification of the rate-independent parameter c; Step II. iden-
tification of the rate-dependent weights k and b; and Step III. iden-
tification of all the uncertain parameters k, b, c and g.

� Firstly, we apply an input signal with low frequency to the PTS,
and the whole model can be regarded as rate-independent.
Then the rate-independent model defined in (1) is utilized to
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obtain the estimated parameters wh and c. The nonlinear opti-
mization is implemented in the following manner: set the ini-
tial value of c as c ¼ ½c1; c2; . . . ; cm�T ¼ ½1; 0; . . . ; 0�T; use linear
least-square method to calculate the initial value of wh ; adopt
the LM method to estimate the optimized value. The cost func-
tion of this nonlinear optimization is set as follows:
Jð bwh; bc ; tÞ ¼ ûðtÞ � uðtÞ ¼ bwT
h �Hr½bSðyÞ�ðtÞ � uðtÞ: ð6Þ

In this way, the optimized values bwh; bc are obtained.
� Secondly, an input signal with a wide bandwidth and high fre-
quency is applied to the PTS, and the rate-dependent model (3)
can be adopted. Based on the initial values obtained in (6), the
LM method is then adopted to conduct another nonlinear opti-
mization procedure. The cost function of this nonlinear opti-
mization is set as follows:
Jðbk; bb; bc; tÞ ¼ ûðtÞ � uðtÞ

¼ ðbk _yðtÞ þ bbÞT � Hr ½bSðyÞ�ðtÞ � uðtÞ: ð7Þ

Then, the optimized values bk; bb; bc are obtained.
� At last, adopting the modified model (5), the overall nonlinear
optimization procedure is in the following way: set the initial
value of g as g ¼ ½1; 0; 0�T; set the initial value of k, b, c as

the estimated values bk; bb; bc obtained previously; adopt the LM
method to estimate the optimized value. The cost function for
this nonlinear optimization is set as:om
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Jðbk; bb; bc; bg ; tÞ ¼ bGððbk _yðtÞ þ bbÞT �Hr½bSðyÞ�ðtÞÞ � uðtÞ: ð8Þ

Till this point, all the uncertain parameters have been success-

fully determined as bk; bb; bc; bg .
3.3. Practical feedforward control law construction and application

Based on the obtained model, a practical feedforward control
law, whose scheme is illustrated in Fig. 2, is proposed for a PTS.
As can be seen from this figure, a direct inverse rate-dependent
P–I model, a saturation operator, and a polynomial module consti-
tute this compact controller, whose output signal is directly
exerted on the X or Y-piezo. This practical feedforward controller
helps the PTS to achieve high-speed trajectory tracking at different
frequencies.

Considering the requirements to enable an AFM to accomplish
fast imaging tasks, the constructed feedforward law is then com-
bined with a feedback component (usually, a traditional PID con-
troller) to form a combined control strategy with comparatively
simple structure, which stabilizes the PTS around each scanning
point within sufficiently short time. The structure of the combined
control strategy is shown in Fig. 3, where, the direct inverse P–I
controller (PIINV) eliminates predictable error to fasten system
response, meanwhile, the traditional PID controller offers real-
time signal feedback to deal with modeling error and various noise
within the system. This combined control strategy is implemented
and then employed in a practical AFM system to develop high-
speed imaging mode.1

4. Experimental results and analysis

All the experiments are conducted on a Benyuan CSPM 4000
AFM system shown in Fig. 4, where the piezoelectric tube scanner
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Fig. 2. Feedforward control system.

Fig. 3. Feedback and feedforward combined control strategy.

Table 1
Parameter identification results.

i kið�10�4Þ bi ci gi

1 1.8278 28.9617 0.9577 3.5203
2 �0.8834 �7.8865 0.0859 �0.0170
3 �0.8037 �1.5569 �0.0055 0.0002
4 �0.2165 �2.4188 �0.0033
5 0.3884 �0.5172 �0.0001
6 0.3737 �1.0034
7 �2.0665 �1.7155
8 �1.2596 0.4559
9 6.9434 �1.1909

10 8.7888 2.7476
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Fig. 5. Model verification results.
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(see Fig. 4(a)) has an approximate displacement range of

20� 20� 4 lm at the driving voltage range of �160 V to +160 V,
and a capacitive microsensor with the sampling period of 50 ls
(see Fig. 4(b)) is utilized for displacement measurement. Please
note that since the samples are placed on the calibration block, this
special structure will lead to the increase of sample scanning scope
(much larger than 20lm).

Firstly, through the data preprocessing procedure, all the mea-
surements are filtered using a medium filter, and aligned to be
symmetric around zero automatically. To increase the accuracy
of the PTS model, the initial 20,000 data is abandoned, and the
middle 40,000 data is adopted for parameters identification and
trajectory tracking.

4.1. Parameters identification experiments

We adopt two sets of input and output experimental data. In
the first data set, the control input is selected as a 5 Hz, 150-V p–
p amplitude sinusoidal signal to accomplish Step I. for parameters
identification. In the second data set, the control input is selected
as a superposition of three sinusoidal signals with frequencies of
4 Hz, 23 Hz, and 35 Hz to accomplish Step II. III, explicitly in the
following form:

uðtÞ ¼ 50 sinð8ptÞ þ 50 sinð46ptÞ þ 50 sinð70ptÞ ð9Þ
After several trials we finally select n ¼ 10 and m ¼ 5 in (1) and

(2). The final identified parameters are shown in Table 1. It should
be noted that the parameter identification results are also related
with the specific system structure behavior, the selected sampling
period, the input/output data amplitude range, and so on.

ww.sp
Fig. 4. Experimental setup for a PTS. (a) Piezoelectric

w

We then utilize another set of data to test the precision of the

improved PTS model, with the model verification results shown
in Fig. 5, where the actual input coincides very well with the mod-
eled input, convincingly indicating the high precision of the pro-
posed rate-dependent PTS model.

4.2. Trajectory tracking experiments

To verify the modeling and control performance, some trajec-
tory tracking experiments are conducted using the proposed prac-
tical feedforward controller. According to the Fourier Transform
theory, sinusoidal signals reflect all the period signals essentially
in frequency domain. Besides, amplitude varying sinusoidal signals
tube scanner. (b) Capacitive microsensor setup.
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can help to achieve better imaging performance in the AFM imag-
ing process [21,22]. For these reasons, we directly apply super-
posed sinusoidal signals as desired tracking signals.

For these experiments, two desired tracking signals within the
identification frequency range are first used to test the tracking
performance. The first one is a superposition of three sinusoidal
signals with lower frequencies of 7 Hz, 13 Hz, and 19 Hz, explicitly
given in the following equation:

uðtÞ ¼ 3:3 sinð14ptÞ þ 3:3 sinð26ptÞ þ 3:3 sinð38ptÞ; ð10Þ

while the second one is a superposition of three sinusoidal signals
with higher frequencies of 21 Hz, 26 Hz, and 33 Hz:

uðtÞ ¼ 3:3 sinð42ptÞ þ 3:3 sinð52ptÞ þ 3:3 sinð66ptÞ: ð11Þ

The tracking performance for these two signals are shown in Figs. 6
and 7, respectively, from which it can be seen that the actual output
follows very well with the desired trajectory, with the tracking error
mostly less than 2lm.

Besides, to test the robustness of this practical feedforward con-
troller, a superposed tracking signal beyond the identification fre-
quency range is further applied to the system, which is a
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superposition of three sinusoidal signals with frequencies of
23 Hz, 34 Hz, and 45 Hz. The tracking performance for this signal
is shown in Fig. 8, which is still acceptable with mostly satisfactory
tracking precision.

All these tracking experimental results illustrate high-accuracy
of the established direct inverse rate-dependent P–I model, and
they convincingly demonstrate the satisfactory tracking perfor-
mance of the designed control strategy.

4.3. High-speed AFM imaging experiments

To test the performance of the proposed combined control
strategy applied to the AFM high-speed imaging mode, some
AFM scanning experiments are conducted on a scanning equidis-
tant stripe grating sample with different control laws. As men-
tioned above, we adopt the spiral scanning pattern in AFM image
scanning instead of the traditional triangular signal pattern, so as
to avoid possible oscillations at the turning points and save scan-
ning time. The parameters for the spiral scanning pattern are set
as follows:

numcurves ¼ 400; rmax ¼ 160 � kfactor V; t ¼ 50; 000 � kfactor V=s;.cn
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kfactor ¼ ð2:36=160� 75=15Þ lm=V:

where, numcurves represents the number of times that the spiral
curve goes across the line y ¼ 0, which is similar to the image
resolution in normal scanning pattern. rmax is the largest radius
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Fig. 8. Trajectory tracking for a frequency overrange signal. (a)

Fig. 9. Image scanning control strategies: (a) open-loop. (b) PID f
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displacement (or voltage when under open-loop control strategy)
applied to X/Y-piezo, which is similar to the scanning scope in nor-
mal scanning pattern. t represents the scanning linear velocity
which is set constant, and it is closely related to the scanning time.
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At last, kfactor denotes the calculating scaling factor, which converts
the input voltage into the displacement at the measuring point.

Under the scanning parameters setting, all image scanning pro-
cess is completed within 23 s, while a similar size image under tra-
ditional scanning pattern and control strategy will need more than
40 s at the scanning rate of 10 Hz. It should be noted when better
hardware system is adopted, the scanning time for such an image
can be further shortened by the proposed control strategy.

Then, we evaluate the tracking performance of high frequency
trajectories during image scanning. All the imaging performance
under four different control strategies is shown in Fig. 9. Since
the lines of the stripe grating sample are straight and equidistant,
as long as trajectory tracking performs well, there will exist less
image bending, oscillation or distortion (please see [9] for detailed
description of these cases). Please note that the six white lines on
the images of Fig. 9 are intentionally added to mark out the stripe
grating lines, so as to better exhibit imaging performance of differ-
ent strategies. The detailed analysis for the four control strategies
are summarized as follows:

� open-loop control strategy: it clearly shows that due to the hys-
teresis nonlinearity, the stripe grating lines present bending and
unequal horizontal space phenomenon.

� PID feedback control strategy: it shows that some parts display
improved performance when compared with the open-loop
control strategy, yet it occasionally exhibits even worse perfor-
mance and twist distortion appears in the image. Wherein, the
proportional, integral and derivative gains are respectively cho-
sen as follows:
m

PG ¼ 0:15; IG ¼ 0:2; DG ¼ 0:

It can be seen from these results that common feedback con-
troller cannot compensate the nonlinearity effectively.

� PIINV feedforward control strategy: it shows that the direct
inverse P–I controller helps to eliminate the hysteresis error
to some extent, but it cannot achieve the expected performance.
Wherein, the parameters in the feedforward control law,
bk; bb; bc ; bg , are identified through the previous step.

� PID and PIINV combined control strategy: it shows that nearly
all the stripes form regular, uniform and straight horizontal
space, which fit very well with real sample surface. The adopted
parameters of PID controller and PIINV controller are the same
as above. The imaging performance clearly shows that the com-
bined control strategy can effectively track high frequency
trajectories.

5. Conclusion

This paper designs a practical high-speed feedforward tracking
control law for a PTS, and then apply it to an AFM to accomplish
fast and high-precision image scanning. That is, to achieve satisfac-
tory tracking performance, an improved direct inverse rate-
dependent P–I model, together with a polynomial module, is pro-
posed to accurately describe the characteristics of a PTS, which is
then utilized to design a feedforward tracking control law to enable
the PTS to track a high frequency trajectory. Moreover, based on
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the constructed feedforward control law, a practical combined con-
trol strategy is proposed and then adopted in an AFM to accom-
plish high-speed scanning tasks. Finally, sufficient experimental
results are provided to demonstrate the satisfactory performance
of the proposed model/control strategy. Our future work is planned
to focus on further improving the signal tracking accuracy and
adopting more advanced control laws to achieve even better imag-
ing performance.
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