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In this work, aluminum doped zinc oxide (AZO) and hydrogenated aluminum doped zinc oxide (HAZO)
thin films were deposited on polyethylene terephthalate (PET) substrates at room temperature by DC
magnetron sputtering. Hydrogenation improved the crystallinity and reduced surface roughness of the
AZO thin films. The hydrogenated AZO films revealed improved electrical and optical properties
comparing with the AZO films prepared under the same deposition condition: the resistivity decreased
from 0.18 Ω cm to 3.0�10−3 Ω cm, which was mostly due to the increase of the carrier concentration
from 1.5�1019 cm−3 to 2.3�1020 cm−3. The average transmittance in the visible range increased from
82.0% to 84.5%. This hydrogenated process may provide an easily realized method to fabricate high
quality AZO films on flexible substrates at room temperature.

& 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The deposition of transparent conductive oxides (TCOs) on
flexible substrates has attracted increasing attention due to their
applications in optoelectronic devices and thin-film solar cells [1–
4]. Recently, many research groups have studied Al-doped ZnO
films deposited on polymer substrates because the films combine
attractive properties with low cost, nontoxicity, and stability in
hydrogen plasma [5–8]. Comparing with other deposition techni-
ques, magnetron sputtering is widely adopted in preparing the
AZO films because of the excellent film properties and repeat-
ability [5,9]. However, the low temperature process is not in favor
of depositing high quality films, the resistivity of AZO films on
polymer is too high to be adopted [10]. In order to improve the
quality of films deposited at low temperature, an inorganic buffer
layer was inserted between the AZO film and polymer substrate,
which was reported by some researchers [7,10,11]. Apart from this
approach, hydrogenated aluminum doped zinc oxide (HAZO) film
may be an excellent option for low temperature deposition of high
performance TCOs [12–15]. A low resistivity of 4.01�10−4 Ω cm
HAZO film deposited on glass at room temperature has been
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reported [16]. Due to the physical, chemical and mechanical
differences between the glass and polymer substrates, the effect
of hydrogenation may be different for the AZO films on polymer
and glass substrates [17]. The high quality hydrogenated AZO
(HAZO) films on polymer has been rarely reported.

In this paper, hydrogen was added into sputtering gas with the
aim to improve the properties of the AZO films. The effects of
hydrogenation on the electrical, optical and structural properties
of the AZO films on polyethylene terephthalate (PET) substrates
were investigated.
2. Experimental details

AZO films were deposited on PET substrates from a home-made
1 wt% AZO ceramic target (99 wt% ZnO+1 wt% Al2O3). The substrates
were cleaned in an ultrasonic bath with de-ionized water, and then
blown dried with nitrogen gas before deposition. The distance
between the target and substrate was fixed at 90 mm, while the
base pressure in the chamber was kept below 5�10−4 Pa and
sputtering pressure was 0.6 Pa. The sputtering process was carried
out at room temperature in pure Ar and Ar+8 vol% H2 atmosphere
and the sputtering DC power was ranging from 40W to 80W.

The phase structure of the films was analyzed by X-ray
diffraction (XRD) with Cu Kα radiation in θ–2θ Bragg–Brentano
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geometry (Bruker, AXS D8 Advance, USA). The thickness of the
films was determined by a surface profilometer (Veeco, Dek-
tak150, USA). The surface morphology was examined using an
atomic force microscope (AFM, CSPM5500, China). The optical
transmittance and reflection of the films were measured using an
UV/visible/NIR spectrophotometer (Perkin-Elmer, Lambda 950,
USA). The resistivity, carrier concentration and mobility of the
films were measured using the Van der Pauw method by Hall
measurements (Accent, HL5500PC, UK).
Fig. 2. Optical transmittance and absorption spectra of the AZO and HAZO films
deposited on PET at 60 W.
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3. Results and discussion

Electrical properties: Fig. 1 shows the electrical properties of the
AZO and HAZO films deposited on PET substrates at different DC
powers. It was found that an optimum sputtering power of 60 W
produced the lowest resistivity of 0.18 Ω cm for the AZO film.
When hydrogen was added into the sputtering atmosphere, the
electrical properties of the samples were remarkably improved.
The resistivity of the film deposited at 60 W decreased from
0.18 Ω cm to 3.0�10−3 Ω cm. Correspondingly, the carrier concen-
tration and the Hall mobility increased from 1.5�1019 cm−3 to
2.3�1020 cm−3 and from 2.3 cm2 V−1 s−1 to 8.9 cm2 V−1 s−1,
respectively. When doping hydrogen into the AZO films, on one
hand, the incorporated hydrogen acted as shallow donor, resulting
in the increase of the carrier concentration [14,18–20]. On the
other hand, the hydrogen atoms in the AZO films passivated
defects at grain boundaries and/or acceptors, which improved
the Hall mobility [14,18–20].

Optical properties: Fig. 2 shows the optical transmission and
absorption spectra of the AZO and HAZO thin films deposited on
PET substrates. When hydrogen was added to sputtering atmo-
sphere, the average transmittance of the films in the visible range
(400–800 nm) increased from 82.0% to 84.5%. It was noticed that
the hydrogen introduction resulted in a drastic decrease in the
transmittance of the AZO films in the near infrared range.
Correspondingly, the absorption in the near infrared range of the
Fig. 1. (a) Resistivity, (b) carrier concentration and (c) Hall mobility of the AZO and
HAZO films deposited on PET at different DC powers.

Fig. 3. (a) XRD patterns of the AZO and HAZO films deposited on PET at 60 W. (b) A
narrow scan XRD profile.
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Fig. 4. AFM images of the (a) AZO and (b) HAZO films deposited on PET at 60 W.
The inset is the roughness height histogram.
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film remarkably increased after the hydrogen incorporation. The
variations of optical transmission and absorption spectra in the
near infrared range were caused by the free carrier absorption,
which increased with the hydrogen incorporation. The fundamen-
tal absorption edge of HAZO film moved to the short wavelength
region compared with that of the AZO film, which was also
attributed to the increase in the carrier concentration. The band
gap widening with increasing carrier concentration was due to the
filling of the conduction band by electrons, which was known as
the Burstein–Moss effect [21,22].

Structural properties: The crystal structures of the AZO and
HAZO films deposited on PET substrates were also analyzed by
XRD. The XRD spectra revealed strong preferred orientation (002)
peaks as seen in Fig. 3(a), indicating that the films were orientated
with their axes perpendicular to the substrate plane. Fig. 3(b) is a
narrow scanned XRD profile. When hydrogen was incorporated
into the AZO thin films on PET, the (002) peak position shifted
from 34.131 to 33.921. This implied that hydrogen incorporation in
the AZO matrix induced further expansion of the crystal lattice.
The full-width at half-maximum (FWHM) of the (002) peak for the
thin films on PET decreased from 0.661 to 0.561 after hydrogena-
tion, and the average crystallite size calculated according to the
Scherrer equation increased from 12.5 nm to 14.7 nm. These
results indicated the improvement of the crystallinity.

Surface morphologies: The AFM images of the AZO and HAZO
films deposited on PET are shown in Fig. 4. The HAZO thin film
showed a narrower roughness height distribution than that of the
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AZO thin film. Correspondingly, the RMS roughness decreased
from 5.0 nm to 3.2 nm after hydrogenation. The decrease in sur-
face roughness might contribute to improve the electrical and
optical properties [6,10,23].
4. Conclusions

In summary, highly transparent and conductive HAZO thin
films were successfully deposited on PET substrates by DC magne-
tron sputtering of a ceramic target at room temperature. The
hydrogenation improved the crystallinity and reduced surface
roughness of the AZO thin films. After hydrogenation, the resis-
tivity of the AZO thin films grown on PET decreased from
0.18 Ω cm to 3.0�10−3 Ω cm, and corresponding carrier concen-
tration and mobility increased from 1.51�1019 cm−3 to
2.33�1020 cm−3 and from 2.28 cm2 V−1 s−1 to 8.94 cm2 V−1 s−1,
respectively. The HAZO thin films revealed higher visible light
transmission than that of the AZO thin films. This hydrogenated
process may provide an easily realized method to fabricate high
quality AZO films on flexible substrates at room temperature.
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