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In order to study the effects of anode layer linear ion source(ALLIS)on the microstructure and mechanical prop-
erties of amorphous carbon nitride (a-CNx) films, a-CNx filmswere deposited by the ALLIS assisted radio frequen-
cy magnetron sputtering (RFMS) deposition condition changing the ion source power from 0 to 200 W. The
growth rate, structural morphology, surface roughness, nanohardness as well as the bonding states of deposited
a-CNx films were characterized by scanning electron microscope (SEM), atomic force microscope (AFM), nano-
indentation, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. The H/E and hard-
ness increased relatively with increasing the ion source power up to 100 W. From the Micro Raman analysis,
the content of sp3 carbon in sp3/sp2 ratiowas increasedwith increasing the ion source power. The cross-sectional
SEM images demonstrated that the ion source enhanced the growth rate of a-CNx films. Meanwhile, the rough-
nesswas increased with the ion source power above 100W. Therefore, the optimum ion source power is consid-
ered to be around 100 W in these experimental conditions.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Amorphous carbon nitride (a-CNx) films are structurally analogous
diamond-likematerials. On account of the high atomdensity and strong
covalent bonds, both of them have prominent physical and chemical
properties, such as extreme hardness, outstanding thermal conductivi-
ty, high chemical stability, great biocompatibility, good corrosion resis-
tance and excellent wear and friction properties [1,2]. The composition
and structure of a-CNx films are very complex, and the properties of
films prepared by different preparation methods and technologies are
distinguishing. Recently, significant progress in the synthesis of CNx

films has been made by various physical vapor deposition (PVD) and
chemical vapor deposition (CVD) processes, such as the magnetron
sputtering [3], pulsed laser deposition [4], ion beamdeposition [5], plas-
ma immersion ion implantation [6], filtered cathode arc [7], magnetron
sputtering method [8] as well as plasma-enhanced chemical vapor de-
position [9]. Nevertheless, it is still lack of in-depth understanding to de-
position mechanism, process, microstructure and properties of a-CNx

films. Therefore, it is of practical significance to research the preparation
technology and properties of a-CNx films.

Magnetron sputtering is one of the preferred methods for the syn-
thesis of carbon based amorphous materials such as boron carbides
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(B4C), diamond-like carbon (DLC) and CNx because of its effective disso-
ciation of nitrogenmolecule, simple scalability and easy control of depo-
sition conditions [10]. Broitman et al. [11] studied the tribological
properties of a-CNx films prepared at different substrate temperature
and nitrogen partial pressure, and found that the film friction coeffi-
cients tended to increase for different substrates as the nitrogen content
in the filmwas increased.Wei et al. [12] found that there existed an op-
timized nitrogen partial pressurewhere the nanohardness and thewear
resistance of the film were the highest. Deposition parameters such as
gas flux, substrate bias voltage, ion energy and ion density as well as
substrate temperature in magnetron sputtering were also investigated
by some researchers [11,12].

The low gas ionization rate has been a major challenge during the
preparation of a-CNx films inmagnetron sputtering. In order to improve
the ionization rate of gas, auxiliary ion sources such as additional Kauf-
man ion source [13], end-Hall ion source [14], ion beam [15] as well as
anode layer linear ion source (ALLIS) [16,17] were applied to the depo-
sition of films. Kim et al. [17] prepared the DLC filmswith ALLIS assisted
physical vapor deposition, and found that suitable ion source voltage
promoted the fraction of sp3 bonds in the DLC films. Qi Jun et al. [18]
studied the effects of argon ion beam on the properties of DLC coatings
using dual ion source system, and obtained the highest sp3-hybridized
carbon content of films synthesized with the Ar ion energy of 400 eV.
Comparedwith other auxiliary ion sources, ALLIS is a relatively effective
technology for depositing a-CNxfilms. Themain advantages of this tech-
nique are the low cost, simple structure and increase rate of gas
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Table 1
Deposition parameters of a-CNx films.

Parameters Values

Total gas flow rate (sccm) 40
Base pressure (Pa) 5 × 10−4

RF power (W) 250
Anode layer linear ion source power (W) 0–200
Target-to-substrate distance (mm) 90
Substrate temperature (°C) 150
Substrate bias voltage (V) −50
Working gas pressure (Pa) 0.5
N2 content in the sputtering gas (%) 50
Deposition time (min) 60
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ionization. ALLIS in themagnetic field makes the electrons bound in the
vicinity of the anode surface forming dense plasma region and gas ion-
ize. A low energy, high flow ion beam produced can effectively remove
organic pollutants and the oxidation layer on substrate surface, increase
adhesion and avoid damage to the substrate during bombardment. To
the best of our knowledge, the study on this kind of auxiliary ion source
deposition of a-CNx films has not been reported.

In present study, a variety of a-CNx filmswere successfully deposited
on the silicon substrate at ion source powers ranging from0 to 200Wby
ALLIS assistedmagnetron sputteringmethod. The influences of ALLIS on
the microstructure and bonding configuration of carbon and nitrogen
atoms in a-CNx films were investigated systematically by Raman spec-
trum and X-ray photoelectron spectroscopy (XPS). Finally, the growth
rate, nanomechanical properties of deposited a-CNx films were charac-
terized by scanning electron microscopy (SEM) and nano-indentation
tests, respectively.

2. Experimental

Amorphous carbon nitrogen (a-CNx) films were deposited by radio
frequency magnetron sputtering (RFMS, JSD450-III) at a frequency of
13.56 MHz using anode layer linear ion source (ALLIS). The schematic
diagrams of the experimental apparatus and ALLIS are shown in Fig.
1a–b. The target material was a 5 mm thick disk made of pyrolytic
graphite with a purity of 99.999%. The direct current component of the
substrate potential was referred to the substrate bias voltage. In order
to produce denser plasma near the substrate surface and increase the
flux density of impinging ions, ALLIS was installed between the target
and substrate holder, as shown in Fig. 1a.

Due to the high requirement of the PVD method for the cleanliness
of the equipment, the vacuum chamber should be cleaned enough be-
fore each experiment, and then the substrate was placed in the vacuum
chamber. High-purity single-sided polishing p-type (100) silicon wafer
was cut to 1.0 × 1.0 cm2 substrates. The silicon substrates were im-
mersed into 10% concentration of HF solution for 10 min to wipe off
the oxide on its surface and then ultrasonically cleaned, in proper
order, in acetone, methanol and deionized water for 10 min to remove
the surface contaminants, finally dried in a flow of dry nitrogen. Prior
to deposition, the substrates were outgassed at 400 °C in high vacuum
for 30min, and then sputter-cleaned in an Ar discharge with a negative
bias of 200 V for 20min. Themagnetron targetwas pre-sputteredwith a
closed shutter at 90W for 10min. ALLIS is a type of ion generator which
can be introduced into various gases. A gas mixture of nitrogen and
argon which passed through the slit was ionized and charged particles
were accelerated electrostatically. During film deposition, the frequencyw.sp
Fig. 1. Schematic diagrams of (a) ALLIS a
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and duty cycle of ALLIS with defocusing discharge mode (low voltage,
high current, high duty cycle) were kept at 38 kHz and 50%. The ion
source power was varied from 0 to 200 W (Table 1). The other control
factors were fixed.

For the characterization, the microstructure of the samples was ana-
lyzed using a LABRAM-HR800 Raman spectrometer with excitation
wavelength of 514.5 nm. The chemical composition and bonding states
of the carbon and nitrogen atoms on the surface of a-CNx films were
characterized using a PERKIN-ELMER CHI 5300 X-ray photoelectron
spectroscopy (XPS) with Al-Kα radiation line (1486.6 eV). The samples
surface was etched by Ar ion for 10 min conducted to remove contam-
ination prior to XPS analysis. XPSPEAK softwarewas used fitting the C1s
and N1s core level spectra in XPS. Shirley function was modeled as the
backgrounds. The surface structure and roughness of deposited samples
were characterized by Atomic force microscope (AFM) from CSPM
3000, which operated in contact mode with scan area at 1.2 × 1.2 μm2.
The growth rate of a sample was calculated by dividing its thickness
by corresponding deposition duration. The cross-sections of the speci-
mens were studied by scanning electron microscopy (SEM, Hitachi-
S4800). The hardness (H) and elastic modulus (E) were measured by
nano-indentation (Agilent technologies, G-200) tests using continuous
stiffness method (CSM).

3. Results and discussion

3.1. Microstructure

The influence of ion source power on the Raman spectra of a-CNx

films and deconvoluted Raman spectrum of the a-CNx film deposited
at an ion source power of 100 W are investigated in Fig. 2a. The curves
were displaced vertically for clarity. These spectra of a-CNx films are
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Fig. 2. (a) Raman spectra of a-CNx films on Si for various ion source powers and the deconvolution of Raman peaks of a-CNx (100 W) films and (b) the FWHM of G peak (FWHMG), the
intensity ratio of D to G peak (ID/IG) variations with the ion source power for deposited samples.
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practically consistent with the corresponding spectrum of the diamond
like carbon film. The intensities andwidths of G andD bands of the sam-
ples located at approximately 1550 and 1360 cm−1 changed obviously
at different ion source powers. The weakest D peak observed as a-CNx

films were deposited at 100 W. With further increasing ion source
power from 100 to 200 W, the peak position of G mildly shifts toward
the high frequencies and the D peak becomes more intense. The width
and intensity of D band are related to the lattice disorder induced by
N incorporation and the nitrogen ion bombardment in a-CNx films [19,
20]. Beside the typical carbon D and G bands, other additional bands
were also observed after the ion source was used. The band observed
at approximately 2200 cm−1, can be associated with nitrile radicals
(C `N bond) [20]. The Raman spectra of samples were deconvoluted
into two Gaussian bands, which were D band and G band. The D band
arises from the breathing modes of sp2 carbon atoms in clusters of six-
fold rings. The G band originates from the bond-stretching modes of
sp2 carbon atoms in both six-fold rings and chains [21]. Fig. 2b shows
the full width at half maximum of G band (FWHMG), and the intensity
ratio of D to G peaks (ID/IG) as a function of ion source power.

According to Raman analysis, the synthesized films in this work
were a-CNx, which contained a mixture of π and σ bonding [20]. Since
Raman scattering from π bonds is 50–230 times stronger than that
from σ bonds [22], the D and G modes caused by π bonding dominated
the Raman spectra of deposited films. The positions of the G peaks were
in the range of 1552–1571 cm−1, lower than graphite (1580 cm−1),
which was due to bond angle distortions and other disorders [22]. The
FWHMG is related to the bond angle distortions in the excitedww.sp
Fig. 3. XPS high resolution spectra of the a-
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configurations, and low value of FWHMG corresponds to high ordered
sp2 configurations [16]. The variation of ID/IG ratio with increasing ion
source power showed a different trend with the FWHMG. Usually,
high content of sp2 carbon clusters corresponds to high ID/IG ratio [22,
23]. Accordingly, the content of sp2 carbon clusters decreased with ion
source power up to 100 W, however, further increasing ion source
power resulted in the sp3 structure transforming to graphite structure.
The ionization rate of gas and gas reaction activity increasedwith the in-
creasing of ion source power. In the surface layer of materials, incident
ions caused ‘thermal spike’ which instantaneously induced high
temperature and high pressure in a rather limited area, promoting
the formation of sp3 configuration [24]. Meanwhile, over high ion
bombarding energy causes the sp3 transforming into sp2 configuration,
which is possibly due to the thermally activateddiffusion [24–26]. In ad-
dition, since Raman spectra is sensitive to sp2 hybridization and insensi-
tive to sp3 hybridization, the real sp2 fraction in a-CNx films is lower
than that suggested by experimental ID/IG ratio [27].

For deeply investigating the bonding states of a-CNx films, the C1s
and N1s high resolution XPS spectra were decomposed, as presented
in Fig. 3. The C1s spectra of deposited films contained fourwell-resolved
peaks (denoted by C1s-1, C1s-2, C1s-3 and C1s-4) with a FWHM about
1.6 eV in the range of 284–289 eV (Fig. 3a). The peak C1s-1 corresponds
to sp2 carbon bonding, and the peak C1s-2 is assigned to sp3 carbon
bonding [28,29]. The peak C1s-3 and C1s-4 correspond to carbonmulti-
ple bonding with nitrogen [28,30] and carbon bonding with oxygen
caused by foreign impurity in the films [31], respectively. The N1s spec-
tra contained four main components with a FWHM about 1.5 eV, as

.co
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CNx (100 W) film (a) C1s and (b) N1s.
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shown in Fig. 3b. The five peaks (denoted by N1s-1, N1s-2, N1s-3, N1s-4
and N1s-5) were at the binding energy of 398.3, 399.3, 400.1, 401.2 and
402.0 eV, respectively. Peaks N1s-1, N1s-2, N1s-3 and N1s-4 correspond
toN\\C, N`C,N_C andN_N (N2) bonds, respectively [23]. PeakN1s-
5 is likely to be non-polar nitrogen molecule bond [31].

XPS spectra can be not only used for the qualitative determination of
the elements of the a-CNx film, but also be used for quantitative deter-
mination of the elements. The N/C ratio of the deposited a-CNx films
can be determined from the ratio of integrated net intensities of the
N1s (AN) to C1s lines (AC) in the XPS spectra of deposited films by using

nN

nC
¼ AN=0:5ð Þ= AC=0:31ð Þ½ �

where the constants of 0.51 and 0.31 are the atomic sensitivity factors of
nitrogen and carbon, respectively [32].

The [N]/[C] and sp3/sp2 carbon ratio of a-CNx films with different ion
source powers are seen in Fig. 4, respectively. [N]/[C] ratio is an impor-
tant factor influencing the microstructure of a-CNx films. It can be seen
that the use of the ALLIS greatly increased nitrogen fraction and sp3/
sp2 in the films. The ratio of N/C in the film increased to a maximum
of 0.55 at an ion source power of 100 W. However, a further increase
in the ion source power would slightly decrease the N/C ratio in the
films.When a-CNx filmswere depositedwithout the ion source, the car-
bon species interacted solely with the N2 molecules in the ambient gas,
and a lower incorporation of N atoms in the film occurs. When ALLIS
was used during the film deposition, the carbon species would interact
with reactive nitrogen atoms and N+ ion supplied by the RF discharge.
This would improve the incorporation of N atoms in the films. The
amount of nitrogen in the films depends on their sticking probabilities
and sputtering yield at the growing film surface [33]. However, with
ion source power further increasing, the sputtering effect of N ions be-
came stronger, the carbon atoms on the film surfacemight lose their ni-
trogen neighbors due to preferential sputtering of nitrogen [34]. The
kinetic energy of N ions partially translated into thermal energy when
N ions impacted on film surfaces [35]. Sufficient thermal energy made
film atoms to achieve more thermally activated mobility. Therefore
the chemical reactions happened between incident N ions and the N
atoms in CN species to form N `N bonding. N escaped from the film
in the style of nitrogen molecule, caused chemical re-sputtering. The
chemical re-sputtering was thermally activated and was enhanced by
increasing ion source power. That was the main reason for the decrease
of nitrogen content in thefilms. The sp3/sp2 ratiowas calculated accord-
ing to the ratio of C1s-1 to C1s-2 peak area. It was found that the varia-
tion of the sp3/sp2 ratio had the similar trendwith the [N]/[C] ratio. XPS
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Fig. 4. [N]/[C] and sp3/sp2 carbon ratio of a-CNx films as a function of ion source power.
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analysis indicated that increasing N content would increase sp2 carbon
and reduce sp3 carbon in the films.

The three-dimensional AFM images of the samples are demonstrat-
ed in Fig. 5a–d. It can be seen that the surfacemicrograph of a-CNx films
was obviously dependent on the ion source power. The surface of a-CNx

(100W) is relatively smoothwithout visible protuberance compared to
other samples. With further increasing the ion source power, the film
surface changed from smooth to a peak-and-valley structure, and the
film surface became rougher. The rms values of the samples increased
from 1.6 to 2.71 nm, and the rms value of a-CNx (100W)wasminimum
(Fig. 5e). For compared, a-CNx (0 W) has the bigger roughness, this in-
dicates that ALLIS has obvious influence on the film surface
microtopography. ALLIS can effectively improve the nitrogen ionization
rate, and increase ions bombarding energy. The ballistic effects of inci-
dent N+ ions increased the mobility of film atoms, which resulted in
downhill diffusion along the inclined surface, leading to the smoothness
of the film surface [36]. On the contrary, sputtering effect was enhanced
by increasing bombarding energy, induced film surface roughing.

In addition, cross-sectional SEM images were taken in order to study
the effect of the ion source power on the growth rate of the a-CNx film.
As shown in Fig. 6a–d, the thickness of samples increased from around
200 to around 300 nmwith increasing the ion source power. This is be-
cause the number of high-energy ions increases with increasing ion
source power, and therefore, the number of particles deposited on the
substrate increases. The growth rate gradually increased from 3.3 to
5 nm/min (Fig. 6e), which indicated that ALLIS had obvious promoting
effect on the deposition rate of a-CNx films.

3.2. Nanomechanical properties

Fig. 7a showed the H and E behavior as function of the indentation
depth of representative a-CNx (100 W) sample. With the increased in-
dentation depth, the hardness of deposited films also enhanced from
nearly 0 to the maximum, and then followed by a slow downward
trend (Fig. 7a). The nanohardness and [N\\C]/[N `C] of samples as
function of ion source power are presented in Fig. 7b. The highest hard-
ness observed as a-CNx films were deposited at an ion source power of
100 W. Compared with the case without ion source, nanohardness of
deposited films had greatly promoted, this suggested that the ALLIS
had an obvious effect to improve the nanohardness of the a-CNx film.

Additionally, Jing Ni et al. [37] suggested that [N\\C]/[N `C] ratio
had a close relationship with the hardness of CNx films. Because the
N `C bond as terminating group breaks the continuity of the network
in the structure of CNx films, high concentration of the N `C bond
makes the film structure less compact [21]. The decrease of [N-C]/
[N`C] ratiowith increased ion source power above 100Walso contrib-
utes to the softened a-CNx films. The sp3 content has great influences on
themechanical properties of a-CNx films, and high sp3 content is accom-
panied by large hardness and elastic modulus. Raman spectra showed
the sp3 content of samples increased with increasing the ion source
power, and then decreased with further increase in ion source power,
the sp2 content had opposite tend with that. The films transformed be-
tween the graphitization and cubic phase, thus hardness and elastic
modulus were changing. Contrarily, sp2 configuration not only contains
weak π bonding, but also damages the connectivity of the covalent net-
work, which leads the film softening. Therefore, increasing sp3/sp2 car-
bon ratio improves the hardness of the film [38]. In this work, the high
fraction of sp2 bonding and low fraction of sp3 bonding coexisted in a-
CNx films as indicated in XPS results shown in Fig. 4. It was found that
with increasing ion source power above 100 W, the sp3/sp2 carbon
ratio decreased from 0.51 to 0.43, so the hardness gradually decreased.

The variations of the H/E and H3/E2 ratio of a-CNx films as a function
of ion source power are investigated in Fig. 8. The ratio of the hardness
to elasticmodulus (H/E) of thefilm is the plastic index,which is an effec-
tive mean to explain the deformation mechanism of films, and it is also
one of the indexes to predict the wear resistance of the material [39].
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Fig. 5. Three-dimensional AFM images of a-CNx films with different ion source powers (a) 0W, (b) 100W, (c) 150W, (d) 200W, and (e) the root mean square (rms) roughness of a-CNx

films as function of ion source power.
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The value ofH/E varies between 0 (plastic behavior) and 0.1 (elastic be-
havior) for carbon coatings [40], and high value of H/Emeans that these
films are highly resistant to plastic deformation [41]. The term H3/E2

combines the H and E values of a material and sets the amount of the
elasticity exhibited by the film. Particularly, high (low) values of H3/E2

are correlated to the high elasticity (plasticity) deformation, and the
greater values of H3/E2 represent the better fracture toughness of the
film [39]. The value of H/E without ALIS was 0.098, while the value of
the a-CNx (100 W) film was promoted to 0.123, then dropped to 0.109
with the power increasing to 200W. These results indicated appropriate
ion source power was beneficial to the improvement of elasticity but
exorbitant ion source power made elasticity of the film decline. Values
ofH3/E2 displayed the same trendwith the ratio ofH/Ewhich illustrated
the fracture toughness of films increased firstly and then decreased.
4. Conclusions

By using anode layer linear ion source (ALLIS) assisted RFMS tech-
nology, amorphous carbon nitride (a-CNx) films were successfully pre-
pared on the Si (100) substrate. The effects of ALLIS on the surface
chemical bonding configuration and mechanical properties of a-CNx

Image of Fig. 5


Fig. 6. The cross-sectional images of SEM in deposited a-CNx films with different ion source powers (a) 0W, (b) 100W, (c) 150W, (d) 200W, and (e) the growth rate variations with the
ion source power for deposited samples.

Fig. 7. (a)Nanohardness and elasticitymodulus variationswith thedisplacement for the a-CNx (100W) filmand (b) nanohardness and [N\\C]/[N`C] ratio of a-CNxfilms as function of ion
source power.
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Fig. 8. H/E and H3/E2 ratio variations with the ion source power for a-CNx films.
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films have been investigated systematically. The conclusions could be
summarized as:

(1) With an increase in ALLIS power, the deposition rate of films in-
creased from 3.3 to 5 nm/min and surface quality had been sig-
nificantly improved while the minimum surface roughness of
a-CNx films was obtained at an ion source power of 100 W in
the range of experiment condition.

(2) The existence of ALLIS effectively enhanced the sp3 carbon bond
content and hardness of the film. Moreover, films prepared at an
ion source power of 100 W presented maximum hardness,
highest content of cubic phase and better fracture toughness.
Thus ALLIS has played an enormous role in the improvement of
mechanical properties of a-CNx films.
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