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Abstract Nanoscale bacterial cellulose (BC) may be

functionalized to provide advanced eco-friendly sub-

strates. In the current work, BC was functionalized by

magnetron sputtering of copper (Cu) to endow it with

unique electromagnetic shielding properties while

concomitantly improving mechanical, thermal, and

conduction properties. The surface morphologies and

chemical characteristics of BC/Cu nanocomposites

were studied by atomic force microscope, Fourier

transform infrared spectroscopy, thermogravimetric

analysis, X-ray diffraction and energy dispersive

X-ray analysis system to conclusively demonstrate

that Cu nanoparticles were evenly deposited on the

surfaces. This topological construct enhanced the

thermal stability, surface conductivity, mechanical

properties, and interference (EMI) shielding effec-

tiveness. EMI effects were also investigated by the

four-point probe, uniaxial testingmachine and a vector

network analyzer that showed the BC/Cu nanoscale

materials have high conductivity (0.026 S m-1), good

mechanical properties (41.4 Mpa) and excellent EMI

shielding (55 dB).

Keywords Bacterial cellulose � Copper �Magnetron

sputtering � Conductivity � Mechanical strength �
Electromagnetic interference shielding � Thermal

properties

Introduction

Recently, increasing attention has been paid to the

development of microwave absorbing and insulation

materials for electromagnetic interference (EMI)

shielding (Che et al. 2004; Lakshmi et al. 2009; Song
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et al. 2009; Yang et al. 2005b) within the context of

human safety and sustainable development initiatives

(Cao et al. 2010). EMI shielding effectiveness (SE),

defined by the parameter decibel (dB), is important in

the development of electronic materials in which

30 dB of SE is satisfactory when the attenuation of

EMI radiation is 99.9 % (Huang 2003;Markham 1999;

Yang et al. 2005a). Microwave absorbers, which can

assimilate such radiation, are required for many low-

cost, broadband and flexible industrial applications.

Copper (Cu) has been used as a conductive material

for many years, because it possesses lower resistance

than Al and lower cost than Ag (Tyagi et al. 2000). Cu

nanowires, in fact, have found a niche following

intensive studies in electroplating (Edelstein et al.

1997). Bacterial cellulose (BC) as synthesized by

Acetobacter xylinum has a three dimensional web

structure with nanofibril diameters (30–70 nm) (Chen

et al. 2013) and displays fascinating features including

high ultrafine porosity, high crystallinity, water

absorbance, high tensile, biocompatibility, ease of

chemical modification, cost (Klemm et al. 2001), and

moldability during formation relative to natural cel-

lulose (Sen et al. 2008). It has thus become a very

useful biomaterial for many practical applications

including reinforcing materials, supercapacitance,

artificial blood vessels, electrochemical device (Jonas

and Farah 1998; Petersen and Gatenholm 2011),

stretchable conductors, highly conductive materials

(Liang et al. 2012), lithium ion battery anodes (Wang

et al. 2013a), and conductive and fire-resistant aero-

gels (Wang et al. 2013b). Furthermore, BC has

become an attractive substrate for porous aerogel

nanocomposites that exhibit unique mechanical and

physical properties, including novel membrane mate-

rials (PengFei et al. 2016;Wen et al. 2013; Zheng et al.

2014).

BC by virtue of its physical and chemical versa-

tility can be endowed with conductivity with conduc-

tivity within polymer composites (CPCs). Nowadays,

several BC based electromagnetic shielding materials

have been reported, e.g. polypyrrole/BC (15 dB)

(Lian et al. 2015), CoFe2O4/BC (25 dB) (Han et al.

2015). Similarly, BC with filler in composites were

also investigated to improve EMI SE, such as Fe3O4/

BC (Marins et al. 2013) and FeCl3/PAni BC (Marins

et al. 2014). Within electronics, a device is termed

electromagnetically compatible if it is not affected by

fields arising from other devices, including itself

(Engineering 2006). Thus, a satisfactory shielding

material must accommodate both incoming and

outgoing EMI. It is known that three mechanisms

can be invoked for acceptable EMI SE: reflection on

the surface of substrate (SER), the absorption of

electromagnetic energy (SEA), and multiple-reflec-

tion (SEM) of electromagnetic radiation (Chung

2000). In a homogeneous conductive material, reflec-

tion is often the predominant shielding mechanism in

which the material deploys mobile charge carriers

(holes or electrons) to destructively interfere with

incident EM waves. Absorption is a secondary

shielding mechanism related to material thickness.

The last shielding reason is multiple-reflection con-

sidered as interior reflections within shielding mate-

rials. EMI SE can be calculated by the following

equation (Li et al. 2006; Wang et al. 2008):

SEtotal ¼ 10 log Pi=P0ð Þ ¼ SER þ SEA þ SEM ð1Þ

In which the incident Pi is separated by the remaining

power (P0), the reflected power (Pr), and the absorbed

power at the shielding output (Thomassin et al. 2007).

In this study, the three dimensional structure of BC

may provide a platform for multiple reflection mech-

anisms to interfere with EMI SE. The EMI mecha-

nisms involved within BC/Cu nanocomposites were

investigated by magnetron sputtering (Fig. 1). This

study therefore focused on measuring the effect of

reflection and multiple-reflection on EMI SE by

analyzing appropriate power data. A comprehensive

investigation into nanomaterials and their potential

application for EMI shielding was conducted.

Experimental section

Materials

Cu target was purchased from Hefei Department of

crystal material Technology Co., Ltd (Hefei, China).

Non-woven fabric (an area mass of 500 g/m2) was

obtained from Jiangsu Sophie filter material Co., Ltd

(Yancheng, China). Woven fabric was purchased from

Jiangsu Sinocot International Trade Co., Ltd (Changz-

hou, China). BC was supplied from in-house lab

(Jiangnan university, China). All of the chemicals

were of analytical grade and solutions were prepared

with distilled water.
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Preparation of BC

BC pellicles were produced by A. xylinum (G. xylinus)

bacterial strain in Hestrin and Schramm (HS) medium

(0.6 % glucose, 0.8 % bacto-peptone, 2.5 % yeast)

(Toyosaki et al. 1995), which was dissolved in

distilled water (neutral pH). The flasks were incubated

statically at 30 �C for 7 days. The synthesized cellu-

lose were dipped into 0.1 M NaOH for 4 h at 80 �C to

clear the cells and culture liquid (Long et al. 2014).

Afterwards, the pretreated BCwas rinsed 3 times at pH

7 distilled water.

BC culture process

The growth of Gxylinus was conducted over a static

culture 6-day track in which it was first added to a

100 ml Erlenmeyer flask containing 10 ml of HS

medium (Seok Ho et al. 2006). On day one, the culture

solution was a completely transparent orange-colored

liquid (Fig. 2a) that became more turbid over time

(Park et al. 2009). On the six, the culture began to

display membranes (not unlike the original culture

color) indicating the gradual formation of a BC

pellicle. The sixth day presented gel-like white BC

membrane-like structure (Zhou et al. 2013) as shown

in Fig. 2a. Figure 2b displays a schematic diagram for

the BC formation. Initially, free bacteria adhered to

surface bubbles which noticeably presented BC fibers

(Czaja et al. 2004). Subsequently, the BC began to

form a far more tight structure as single cellulose

stands interlinked and progressively accumulated in

the static culture solution. With the passage of more

time, the rate of BC-formation became slow because

of reduced oxygen. The formation of new BC fibrils on

existing pellicle was continuous until more uniform,

compact, and overlapped fibrils were generated

(Nandgaonkar et al. 2014).

Sputter coating

Sputter coating of Cu were conducted on the BC

nanofiber surface in a magnetron sputter (JZCK-420B,

Juzhi Co., Ltd., China). A Cu target (purity: 99.99 %)

was mounted on the cathode. The target was placed

below the substrate at a distance of 80 mm and the Cu

particles were sputtered on BC film facing the target

with rotating speed of 90 rpm to achieve uniform

deposition. Water-cooling was applied to control the

temperature of the substrate during sputtering, which

avoided substrate deformation and the diffusion

movement of the sputtered Cu nanoparticles by high

temperature. Initially, The chamber was pumped to a

pressure of 7.9 9 10-4 Pa before introduction of

sputtering Ar gas (purity: 99.99 %). The flow of Ar

was set to 21 sccm. During sputtering, three different

sputtering powers (30, 50 and 70 W) was set at 0.8 Pa.

Coating time was 0, 5, 10, 20, 30, 40 and 50 min,

respectively. A schematic preparation method of BC/

Cu nanocomposites is shown in Fig. 3. For compar-

ison, the substrate was prepared by similar method

except that BC was replaced by non-woven, woven

and knitted fabrics.

Measurement and characterization

The surface of pure BC nanofibers was analyzed by

FTIR (Nicolet Nexus, Thermo Electron Corporation,

Waltham, MA, USA) in the range 4000–400 cm-1.

The surface morphologies of the BC nanofibers and

BC/Cu nanocomposites were examined by AFM

(CSPM 4000, Benyuan, China). All samples were

scanned in tapping mode at room temperature in

Fig. 1 Schematic

representation of the

mechanism of: a magnetron

sputtering; b difference

between reflection and

multiple-reflection (not to

scale)
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atmosphere. Powder D8 Advance X-ray diffraction

(XRD, Bruker AXS D8, Germany) and Energy

dispersive X-ray spectroscopy (EDX, EDAX-TSL,

AMETEK USA) analyzed BC/Cu nanocomposites

chemical composition. The thermal stability of the

BC/Cu nanocomposites was done using thermal

gravimetric analysis (TGA, TGA/1100SF; Mettler

Toledo International Trading Co., Ltd. Shanghai,

China) at heating rate of 10 �C/min from 25 to

800 �C under N2. Mechanical properties of the pure

BC and BC/Cu materials, whose thickness were

measured on a Coating Thickness Meter (Dualsco-

pe MPO), were tested using a uniaxial testing machine

(INSTRON1185, Instron Corporation, USA) at a

tensile rate of 10 mm/min with a clamp distance of

2 cm. An average value was calculated by ten

reduplicative tests of each sample of 5 cm in length,

1 cm in width. Conductivity measurements were

conducted by a four-point probe (Baishen Technol-

ogy, China), suitable for testing square resistance and

electrical resistivity. All samples were measured ten

times in the same direction and averaged. The EMI SE

was characterized by using a vector network analyzer

(VNA) (Dongnan Univerisity 8573ES, China) using

the method of flange coaxial for testing. The range and

precision of measuring system is from 0 to 1500 MHz.

ASTM-D4935-99 Standard Test Method for Measur-

ing the EMI SE of Planar Materials is shown in Fig. 4.

Fig. 2 The cultivation

process of BC in the

presence of G. xylinus:

a photographic images of

6-day track of BC growth

under static conditions;

b schematic plot of 3D wet

web-like BC formation

Fig. 3 A schematic

preparation method of BC/

Cu nanocomposites
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Result and discussion

FT-IR

Figure 5 reveals FTIR spectra of pure BC nanofibers.

The FTIR spectrum of BC has a band at *3466 cm-1

that can be assigned to stretching of hydrogen bond in

–OH (Zhu et al. 2015). The absorption at 2965 cm-1 is

related to C–H stretching vibrations, consistent with the

characteristic bands of BC reported (Barud et al. 2015).

Thebands at1163 cm-1were attributed to theC1–O–C4

glycosidic link, while the bands at 1100, 1060 and

1035 cm-1 are also assigned to vibrations of C2–O2,

C3–O3 andC6–O6 as reported (Kačuráková et al. 2002).

Morphology analyses

AFM images of BC nanofibers before and after the

distribution of Cu nanoparticles on the nanofiber

surfaces were obtained (Fig. 6a, b). They clearly

showed that BC nanofibers have a reticular three-

dimensional structure, are ultrafine, and are formed of

fiber ranging from nanometer to micron diameters

with lengths up to 100 microns. The diameter of the

fibrils range from 10 to 70 nm with an average

diameter *40 nm (Haigler et al. 1982; Klemm et al.

2001) (Fig. 6c). After depositing the Cu nanoparticles

by magnetron sputtering, the AFM images showed

that the BC surface was covered with nanoscale-thick

Cu nanoparticles layers. As coating time increased, the

Cu nanoparticles coalesced and appeared more uni-

form; the average size of a cluster was *70 nm that

formed a compact and uninterrupted coating as

illustrated in Fig. 6d, e. In Fig. 6f, the average size

of the sputtered Cu cluster was *70 nm, which de-

viated from the theoretical value described by the

Debeye–Scherrer equation (Fig. 8b) largely because

of the collisions due to the coated Cu nanoparticle

layers. Over time, a more compact deposition was

achieved (Xu et al. 2010), as revealed in Fig. 6c.

Fig. 4 The schematic plot

of EMI SEmeasurements by

a vector network analyzer

Fig. 5 FTIR spectrograms obtained from pure BC over a 4000–500 cm-1 and b 1200–500 cm-1
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TGA analysis

The thermal stability and thermal decomposition of

the BC and BC/Cu nanocomposites film were inves-

tigated using TGA (Fig. 7). Two significant weight

loss stages were observed from ambient ?237 and

237 ? 542 �C. The first significant weight loss may

be attributed to evaporation of water, whereas the

second one at *237 �C corresponded to degradation

of the main cellulose skeleton (Li et al. 2010). The BC/

Cu nanocomposites sample showed three distinct

weight losses: the first one occurred over ambient

?267 �C, ascribed to physically absorbed and hydro-
gen bonded linked water molecules (Wang et al.

2010); the second loss from 267 ? 361 �C, related to
BC dehydration, is ascribed to dehydroxylation and

pyrolysis (Gao et al. 2012); the last weight loss

terminated at*750 �C, where the remaining products

are likely copper oxide as revealed in Fig. 7b. This

results indicated that the sputtered Cu nanoparticle on

the BC nanofibrous substrate enhanced BC thermal

stability by a buffer for thermal shock to cellulose

chains (Valiokas et al. 2006).

Fig. 6 AFM surface morphologies of a, b a film of pure BC; c diameter distribution of BC nanofibers; d, e a composite film of BC/Cu;

f size distribution of Cu nanoparticles

Fig. 7 TGA curve of a freeze-dryed BC nanofibers and b BC/

Cu nanocomposites
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EDX and XRD analysis

EDXwas used to determine the existence ofCu in theBC/

Cu nanocomposites. In Fig. 8a, there were several

absorption peaks of Cu in the EDX spectra implying the

existence of Cu. XRD was used to further study BC/Cu

whose results are displayed in Fig. 8b. The diffraction

peaks at *43.4� corresponded to the (220) plane reflec-

tions of copper (Huang et al. 2014). Additionally, the

crystallographic planes marked as (100), (010) and (110)

corresponded to diffraction angles of 14.6�, 17.6� and

22.6� (French 2014; Ruka et al. 2012; Xiang et al. 2016).
The XRD data is shown in Fig. 8b, in which according to

the Debeye–Scherrer equation (Jenkins et al. 1996),

D ¼ jk
b cos h

ð2Þ

K is shape factor, adopting a typical value of*0.89, b
is the breadth of the observed diffraction line at its half

intensity maximum (FWHM), k is the wavelength of

X-ray source used in XRD, and h corresponds to the

peak position (in the current study, 2h = 43.4 for the

Cu nanoparticle). The average crystallite size of the

Cu nanoparticles was *14.2 nm. EDS and XRD

characterizations jointly demonstrated that the Cu

nanoparticles were successfully deposited on BC

nanofibers after magnetron sputtering.

Mechanical properties

Mechanical properties were evaluated by tensile

strength (TS) and elongation at break (EB). TS is an

index of nanofiber strength, whereas EB is an index of

nanofibers stretchability before rupture. Figure 9

shows a representative stress–strain curve under

uniaxial tensile loading for BC and BC-composite

pellicles after 5, 10, 30, and 50 min sputtering. The

value of TS of the pure BC was consistent with earlier

studies: 20–30 MPa (Mckenna et al. 2009). The

addition of BC with different contents of Cu nanopar-

ticles had variable effects on the tensile strength and

elongation at break. From the TS (Fig. 9), TS

increased for the BC/Cu composites except at 5 min

sputtering time, likely due to damage of the surface of

BC substrate from unbuffered (no initial layer)

sputtering. By comparison with pure BC, the maxi-

mum TS value for BC/Cu nocomposites was

Fig. 8 a EDX image of BC/Cu nanocomposites and b XRD patterns of pure BC and BC/Cu composites from magnetron sputtering

Fig. 9 Tensile stress–strain curves of Cu deposited on BC at

different times: 0, 5, 10, 30 and 50 min
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*41.4 MPa (Fig. 9). In general, the nanocomposites

possessed acceptable mechanical properties for poten-

tial EMI materials applications.

The average value and standard deviation of

breaking stress, breaking strain and Young’s modulus

as coating time are shown in Table 1. Firstly, breaking

stress, strain and Young’s modulus decreased during

deposition time (0–5 min). Then, breaking stress,

strain and the Young’s modulus breaking increased

with the increase of coating time (5–30 min). Finally,

breaking stress and breaking strain increased, and

Young’s modulus decreased within coating time

(30–50 min). The effect of different time on the BC/

Cu composite was investigated. The result indicated

that the maximum breaking stress, strain and Young’s

modulus were 41.37 MPa, 6.68 % and 7.02 MPa,

respectively.

Effect of different sputtering conditions

on electronic and EMI shielding properties

Electrical conductivity is pivotal for acceptable EMI

SE because it can interfere with electromagnetic

radiation (Zhang et al. 2011). To study the influence of

time on electrical conductivity under different powers,

electrical conductivity measurements were done by

the four-point probes (Fig. 10a). The electrical con-

ductivity increased with sputtering time for the BC/Cu

nanocomposites due to the increase in the deposited

Cu layer (Wei et al. 2010). As time increased, copper

attached to the BC substrate formed a smoother

surface in which the electrical conductivity of the BC/

Cu nanocomposites was stable. At 50 min, the

nanocomposite at 50 W possessed a relatively higher

electrical conductivity (0.026 S m-1) than at 30 and

70 W likely because the copper coating was loose at

relatively lower power and the conductivity of BC/Cu

nanocomposites may be affected by surface roughness

caused at relatively higher power.

Table 2 reveals the relation between and among the

thickness, electrical conductivity and shielding effec-

tiveness of the BC/Cu membrane. As the thickness

increased, the electrical conductivity and shielding

effectiveness increased. When deposition time

reached 50 min, BC/Cu nanomaterials displayed high

conductivity and acceptable shielding effectiveness.

Table 1 Breaking stress,

strain and Young’s modulus

of Cu deposited on BC at

different time

Time (min) Breaking stress (MPa) Breaking strain (%) Young’s modulus (MPa)

0 28.11 ± 2.04 6.89 ± 0.27 4.25 ± 0.23

5 16.09 ± 1.87 5.73 ± 0.35 3.51 ± 0.24

10 33.06 ± 2.31 5.74 ± 0.22 6.77 ± 0.35

30 36.87 ± 2.71 6.60 ± 0.37 7.02 ± 0.31

50 41.37 ± 2.95 6.68 ± 0.46 5.86 ± 0.27

Fig. 10 The effect of a time on conductivity of BC/Cu nanocomposite at different powers: a 30; b 50; c 70 W (K is electrical

conductivity) and b SE of BC/Cu nanocomposite at different coating time (min): a 0; b 5; c 10; d 20; e 30; f 40; g 50
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The variation of reflection coefficient of BC/Cu

nanocomposites at different coating time and frequen-

cies is given in Fig. 10b. In Fig. 10b, the EMI SE of

BC/Cu nanocomposites showed a significant increase

with coating time. Two main mechanisms are likely

involved in EMI SE: the first shielding mechanism is

attributed to Cu particles that are on BC substrate

formed a continuous compact structure as time

increased so that the absolute values of absorption

and reflection increase with a decrease in the square

resistance value; the second shielding mechanismmay

be ascribed to internal reflections within BC substrate

in which the efficiency of multiple-reflection was

improved by high specific surface area and porous

three-dimensional network structure (Dai et al. 2012).

In general, the EMI SE of the BC/Cu nanocomposites

was enhanced with an increase in film thickness, in

which the maximum EMI SE value was 55 dB at

1500 MHz. EMI shielding efficiency included SER,

SEA and SEM, which can be described by SER = 20-

lg|1 ? n|2/4|n| and SEA = 8.686al (Joo and Epstein

1994), respectively. The SER and SEA (l = 0.52 mm)

were calculated by using electromagnetic parameters.

It was found that total EMI SE arose mainly from

reflection at the low frequency range and the absorp-

tion in the high range. SET was *55 dB, a value

sufficient to meet commercial application SE

demands.

Table 3 compares the EMI shielding performance

of different substrates. The materials displayed satis-

factory results at relatively higher electrical conduc-

tivities, had lower square resistances, and excellent

EMI shielding properties.

Conclusions

EMI shielding-based BC/Cu nanocomposites were

successful prepared by magnetron sputtering of Cu on

BC substrates. The Cu nanoparticles were evenly

deposited on the surfaces of BC nanofibers to ensure

successful realization of the final materials properties.

The effect of different conditions on the EMI SE of the

BC/Cu composite was investigated to show that the

optimum time and power were 50 min and 50 W for

the best materials properties. The as-prepared BC/Cu

nanoscale materials thus displayed high conductivity,

mechanical properties, and acceptable EMI shielding.

Additionally, shielding by reflection was found to be

dependent on time and power of sputtering. These

novel nanocomposites therefore appear to be a

promising candidate material for practical applica-

tions of EMI shielding.
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