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a b s t r a c t

Self-assembled and covalently linked capillary coatings of cyclodextrin-derived (CD) dendrimer were
prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled
DR/CD-dendrimer coatings based on ionic bonding was fabricated first on the inner surface of capillary,
and subsequently converted into covalent bonding after treatment with UV light through a unique
photochemistry reaction of DR. Protein adsorption on the inner surface of capillary was suppressed by
the DR/CD-dendrimer coating, and thus a baseline separation of lysozyme (Lys), myoglobin (Mb), bovine
serum albumin (BSA) and ribonuclease A (RNase A) was achieved using capillary electrophoresis (CE).
Compared with the bare capillary, the DR/CD-dendrimer covalently linked capillary coatings showed
excellent protein separation performance with good stability and repeatability. Because of the replace-
ment of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating pre-
paration, this method may provide an environmentally friendly and simple way to prepare the covalently
coated capillaries for CE.

& 2016 Elsevier B.V. All rights reserved.
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1. Introduction

As a powerful separation tool for biomacromolecule analysis,
capillary electrophoresis (CE) has the advantages of high efficiency,
high sensitivity, high speed, and low cost [1,2]. However, one of
the major impediments for CE analysis is severe protein adsorp-
tion onto fused-silica capillary walls when analyzing proteinac-
eous samples [3–5]. Consequently, sample loss, poor resolution,
peak broadening, long migration times, and unstable electro-
osmotic flow (EOF) were generated by the protein fouling [6]. In
order to suppress protein adsorption onto capillary surface, the
most efficient and commonly used approach is surface modifica-
tion with capillary coatings [7,8]. Many kinds of coated capillaries
[9–11] had been prepared to obtain better separation effect and
succeed.

Generally, capillary coatings are classified into non-covalently
and covalently bonded ones. The non-covalent coatings can be
produced simply by flushing the capillary with coating solutions,
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 and the coating molecules absorb on capillary surface by weak
interactions such as electrostatic, van der Waals, and hydrogen
bonding, etc. [12–15]. Furthermore, the layer-by-layer (LBL) self-
assembly technique can also be used to prepare the non-cova-
lently bonded capillary coatings, which provides the coating with
new structures and functions [16–19]. For example, Haselberg
et al. [20] prepared polybrene-dextran sulfate-polybrene (PB-DS-
PB) triple layer coatings by the LBL self-assembly technique, and
the coatings were fully compatible with mass spectrometry (MS)
detection, causing no background signals and ionization suppres-
sion. The coatings were used for the analysis of α-chymo-
trypsinogen, ribonuclease A (RNase A), cytochrome c (Cyt-c) and
lysozyme (Lys) by CE-MS, and the detection limits for them were
16, 11, 14 and 19 nM, respectively. Compared with the non-cova-
lently bonded coatings, the covalently bonded coatings are very
stable and robust. For example, Xu et al. [21] prepared chemically
bonded PVA coatings that were used for high-efficiency separation
of Cyt-c, Lys, myoglobin (Mb) and trypsin inhibitor. Timperman
et al. [22] prepared chemically bonded PEG coatings which were
used for high efficiency separation of BSA, alcohol dehydrogenase,
carbonic anhydrase and trypsin inhibitor. PVA and PEG covalently
linked coatings not only showed very good anti-protein fouling
properties, but also demonstrated excellent stabilities for
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repeatable separations. However, the preparation process of
covalently bonded capillary coatings is usually complicated which
includes multi-steps such as capillary pretreatment, introducing
coupling agents, and inserting target coating reagents, etc. [23–
26]. Moreover, highly toxic and moisture sensitive silane coupling
agents are traditionally used in the covalent coatings, which often
cause environmental and quality problems during the manu-
facture and application [27,28]. In the fabrication process of ca-
pillary coatings with high quality and performance, how to com-
bine the advantages of the non-covalently and covalently bonded
coatings together, and avoid their disadvantages, is becoming one
of the main development directions.

Dendrimers are highly branched macromolecules characterized
by monodispersity, uniform and controlled sizes, copious surface
functionalities [29,30], and low intrinsic viscosity in solution [30–
32]. For example, Shou et al. [33] prepared a capillary coating
based on 2,4,6,8-tetravinyl-2′,4′,6′,8′-tetramethyl cyclotetrasilox-
ane (D4

Vi) for high efficiency CE separation of adenine. Kabir et al.
[34] used sol–gel dendrimer coatings for capillary microextraction,
and found the dendrimer coatings had excellent thermal and
solvent stability. In this study, we developed a new method to
fabricate the covalently linked cyclodextrin-derived (CD) den-
drimer capillary coatings using the LBL self-assembly technique
DR

assembly assembly

Dendrimer

Fig. 1. Schematic illustration of preparation process of covalent
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combined with photochemistry reactions. The fabrication, struc-
ture and property of the coatings were studied and discussed
preliminarily.
2. Experimental

2.1. Reagents and solutions

Diazoresin (DR) (Mn¼2500) was synthesized according to the
method described elsewhere [35]. Lysozyme (Lys), cytochrome c
(Cyt-c), bovine serum albumin (BSA), amyloglucosidase (AMG),
myoglobin (Mb) and ribonuclease A (RNase A) were purchased
from Sigma (St. Louis, USA). N,N-Dimethyl formamide (DMF) was
purchased from Yongda Chemical Reagent Company (Tianjin,
China). Phosphoric acid (H3PO4) was purchased from Fuyu Fine
Chemical Company (Tianjin, China). Monosodium orthophosphate
(NaH2PO4 �2H2O) and dibastic sodium phosphate
(Na2HPO4 �2H2O) were bought from Shunqiang Chemical Reagent
Company (Shanghai, China). Acetone was obtained from Sanhe
Chemical Reagent Company (Tianjin, China). Sodium hydroxide
(NaOH) and hydrochloric acid (HCl) were purchased from Hong-
yan Reagent Company (Tianjin, China). Phosphate buffer was used
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ly bonded DR/CD-dendrimer coatings on capillary surface.
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Fig. 2. The UV–vis spectra of the assembly from the DR and CD-dendrimer. Number
of assembly cycles (bottom to top): 1, 2, 3, 4, 5 and 6. The inset plot shows that the
absorbance of the films at 380 nm changes linearly with the number of assembly
cycles.
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as separation medium, and the pH value was adjusted by NaOH
(0.1 M) and H3PO4 (40 mM). The concentrations of Lys, Cyt-c, BSA,
AMG, Mb, and RNase A in the testing samples were all 0.5 mg/mL.
All solutions were filtered through 0.45 μm cellulose acetate
membranes (Shanghai Xingya Cleaning Material Factory, China)
before use.

2.2. Synthesis of cyclodextrin-derived (CD) dendrimer

CD-dendrimer (Generation 3, Mn¼19,300) was divergently
synthesized with β-CD as the core and allyl bromide as the
monomer through alternate allylation of the –OH groups and di-
hydroxylation of the double bond, and its zwitterionic surface (Gn-
Cys) was constructed by conjugating cysteine onto the surface
through thiol-ene reaction under UV radiation according to our
previously reported method [36].

2.3. Preparation of dendrimer-coated capillary

As shown in Fig. 1, the CD-dendrimer coated capillary was
prepared as follows: a new bare fused silica capillary was rinsed
with 0.1 M NaOH for 30 min and deionized (DI) water for 10 min.
Then coating was performed by flushing the capillary with aqu-
eous solution of DR (2 mg/ml) for 5 min, and then flushed with DI
water for 1 min and air dried for 5 min. Subsequently, the capillary
was flushed with aqueous solution of CD-dendrimer (4 mg/mL) for
5 min, and then flushed with DI water for 1 min and air dried for
5 min. A self-assembled DR/CD-dendrimer bilayer coating was
completed. The coating cycle was repeated for several times to
obtain multilayer DR/CD-dendrimer coated capillary. Afterwards,
the coated capillary was exposed to 365 nm UV light with an in-
tensity of 350 μW/cm2 for 15 min in order to form the covalently
linked dendrimer capillary coatings.

2.4. Instrumentation and characterization

UV–vis spectrometer (TU-1810, China) was used for monitoring
the LBL self-assembly coating process. The photo-crosslinking of
the DR/CD-dendrimer coating on the capillary was carried out
using a 365 nm UV curing system (EXFO Omnicure S1000) with a
lamp power of 100 W. Atomic force microscope (AFM, CSPM 5500,
China) was used for surface characterization of the coatings. The
CE experiments were performed on a CL1020 high performance
capillary electrophoresis instrument (Huayang liming instrument
Co., China). Fused-silica capillaries of 75 μm ID and 375 μm OD
were provided by Yongnian Optic Fiber (Hebei, China). The EOF
measurements were carried out using a method reported else-
where [19]. Phosphate buffers (40 mM) with pH values in the
range of 3.0–9.0 were applied for determination of EOF. DMF with
a concentration of 0.5 vol% was used as the EOF marker.
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Fig. 3. UV–vis spectra of DR/CD-dendrimer multilayer coatings at different irra-
diation times. Irradiation time (s) (top to bottom): 0, 5, 10, 15, 25 and 35 s; Irra-
diation intensity (at 365 nm): 350 μW/cm2. Inset: relationship between ln[(A0–Ae)/
(At–Ae)] and irradiation time.
3. Results and discussion

3.1. Formation of DR/CD-dendrimer coatings on the inner wall of
capillary

3.1.1. LBL self-assembly
UV–visible spectroscopy was used to monitor the assembly

process of DR and CD-dendrimer. The UV–visible absorbance of
DR/CD-dendrimer film at 380 nm, which derives from the char-
acteristic π–π* transition absorption of the diazo group of DR,
increases linearly with the number of assembly cycles (Fig. 2). This
indicates that the LBL assembly is carried out successfully and
uniformly. The driving force of the assembly mainly comes from
the electrostatic interaction between the positive charged

w

diazonium group (–N2
þ) of DR and negative charged carboxyl

group of dendrimer (Fig. 1).

3.1.2. UV crosslinking
DR is a non-toxic photoactive component often used as cell

culture supports [37,38], and the diazonium groups involved in the
DR/dendrimer multilayer films will be decomposed under UV ir-
radiation, which results in a gradual decrease in the absorbance of
the film at 380 nm (Fig. 3). The photoreaction that takes place in
the multilayer films, which originates from the diazonium de-
composition, is a first-order reaction: ln[(A0–Ae)/(At–Ae)] changes
linearly with irradiation time (Fig. 2, inset), where A0, At and Ae

represent the absorbance of the film before irradiation, after ir-
radiating for time t, and at the end of irradiation (35 s), respec-
tively. As illustrated in Fig. 1, following the decomposition of the
diazonium group in the film under UV irradiation, the ionic bonds
were converted into covalent bonds [39]. The unique photo-
crosslinking reaction of DR has been applied to the fabrication of
covalently attached self-assembly films [40], hollow microcapsules
[41], and bio chips [42].
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Fig. 4. UV–vis spectra of irradiated (A) and nonirradiated (B) DR/dendrimer multilayer coatings before (solid lines) and after (dash lines) etching with DMF at 25 °C for
30 min.
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3.1.3. Stability

As can be seen in Fig. 4, the spectrum of the UV irradiated
coating does not change after immersion in DMF for 30 min
(Fig. 4a), due to its covalently crosslinked structure. However, the
spectrum of the non-irradiated film (Fig. 4b) changes dramatically
because of the etching by the DMF.

3.1.4. Morphology
AFM images (Fig. 5) shows the surface morphology of the bare

and DR/CD-dendrimer covalently coated capillaries. The inner
surface bare capillary is very smooth which has an average surface
roughness (Ra) of 0.225 nm, and after surface modification with
2 and 12 layers of DR/CD-dendrimer covalent coatings, the Ra
increases to 0.582 and 4.305 nm, respectively. The average thick-
ness for the 2 and 12 layers of DR/CD-dendrimer covalent coatings
is about 4.1 and 25.6 nm, respectively. The increased Ra and
thickness with layer numbers indicates that the LBL coating pro-
cess is carried out successfully. Since the 2-layer capillary coating
is smoother than the 12-layer coating and facile to fabrication, it is
adopted for the following studies.

p
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3.2. Performance of the DR/CD-dendrimer coatings for CE analysis of

.

Fig. 5. AFM images of inner surface of (a) bare capillary, (b) two layers of DR/dendrim
capillary.
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3.2.1. EOF
Fig. 6 compares the EOF at different buffer pH values in bare,

DR/CD-dendrimer non-covalently and covalently coated capillary
columns. The magnitude of EOF in a capillary is dependent on the
net surface charge density of chargeable groups. For bare capil-
laries, the dissociation of silanol groups is responsible for the
generation of EOF, which increases with the increase of buffer pH,
due to the strong dissociation of silanol groups in a high pH en-
vironment. By contrast, when the capillary is coated with DR/CD-
dendrimer, especially the covalently coated DR/CD-dendrimer, the
EOF decreases. For example, the EOF of the DR/CD-dendrimer
covalently coated column at pH 4.0 is 5.40�10�9 m2 V�1 S�1 that
is much less than that of the uncoated one
(1.96�10�8 m2 V�1 S�1), because the silanol groups on capillary
surfaces which are responsible for the generation of EOF are
mainly reacted and shielded by the DR/CD-dendrimer coating.

3.2.2. Effect of coating types
Fig. 7a–c shows CE separation results of four proteins by using

bare capillary, DR/CD-dendrimer non-covalent, and DR/CD-den-
drimer covalent capillary coatings in the optimized conditions,
respectively. The bare capillary shows a strong adsorption to the

.co
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er covalently coated capillary, and (c) 12 layers of DR/dendrimer covalently coated
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Fig. 7. Separation of four proteins using the bare capillary (a), two-layer DR/CD-
dendrimer non-covalently coated capillary (b) and two-layer DR/CD-dendrimer
covalently coated capillary (c). Separation conditions: buffer, 40 mM phosphate
(pH¼4.0); injection, 20 s with a height difference of 20 cm; applied voltage,
þ15 kV; UV detection, 214 nm; sample, 0.5 mg/mL for each protein; capillary,
75 μm ID�50 cm (41 cm effective); capillary temperature, 25 °C. Peak identifica-
tion: 1, Lys; 2, BSA; 3, Mb; 4, RNase A.

Table 1
Chemical stability of two-layer DR/CD-dendrimer covalent capillary coatings.

Rinse
solvent

EOF before rinsing
(�10�8 m2 V�1 S�1)

EOF after rinsing 15 min
(�10�8 m2 V�1 S�1)

Degradation
ratioa (%)

0.1 M
NaOH

0.2441 0.2410 �1.27

0.1 M
HCI

0.2401 0.2429 1.17

Acetone 0.2431 0.2476 1.85
DMF 0.2489 0.2441 �1.81

a EOF test conditions: the same as Fig. 6, and buffer pH¼3.0.

Table 2
Separation performance of the two-layer DR/CD-dendrimer covalent capillary
coatings.

Protein Migration time RSD (%)a

Run to run
(n¼5)

Day to day
(n¼3)

Capillary to capil-
lary (n¼3)

Continuous 60 times
running

Lys 0.48 1.10 2.11 1.07
BSA 0.53 2.08 3.30 2.19
Mb 0.86 2.31 3.63 2.89
RNase A 0.81 2.03 3.25 2.01

a Separation conditions: the same as Fig. 7.
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proteins, and thus a poor separation occurs with only two char-
acteristic peaks obtained after a long elution time. Although the
separation performance of DR/CD-dendrimer non-covalent capil-
lary coating is better than that of bare capillary, the analysis time is
also long and the characteristic peaks are broad. Consequently,
effective separation of the proteins cannot be achieved, and the
stability of the coating is very poor due to lack of strong bonding to
the capillary. Compared with the other two, the DR/CD-dendrimer
covalent capillary coating has the best separation performance,
and a stable and baseline separation of the Cyt-c, Lys, BSA and
RNase A is achieved within 18 min.

3.2.3. Separation performance
The 2-layer DR/dendrimer covalent coatings prepared by this

method have very good stability and repeatability. Table 1

w

indicates that the coatings can resist the long time flush of 0.1 M
NaOH, 0.1 M HCl, and DMF, and the degradation ratio of EOF is less
than 2%, which demonstrates that the DR/CD-dendrimer covalent
coatings has excellent stability and good tolerance to the strong
alkaline, acid and organic solvent.

As shown in Table 2, the run-to-run (n¼5) RSD of migration
time for the proteins is less than 1%, day-to-day (n¼3) RSD is less
than 2.5%, and capillary-to-capillary (n¼3) RSD is less than 3%.
After a continuous 60 times running in a coating column, the RSD
of migration time for the proteins are all less than 3%, and the
separation performance of the DR/dendrimer covalent coatings do
not degraded. Therefore, the DR/dendrimer covalently coated ca-
pillaries are robust and may be used in heavy duty analysis.

m.co
4. Conclusions

In this work, a new type of covalently linked CD-dendrimer
capillary coating is prepared successfully using photosensitive DR
as coupling agents combined with the LBL self-assembly techni-
que. The ionic bonding between the DR and dendrimer is con-
verted into covalent bonding after treatment with UV light
through the unique photochemistry of DR. Compared with the
bare capillary and non-covalently bonded DR/dendrimer coatings,
the covalently linked DR/CD-dendrimer capillary coatings im-
proved the CE separation performance for proteins and exhibited
good stability and repeatability. The covalently bonded coatings
suppressed the protein adsorption on the inner surface of silica
capillary, and thus a baseline separation of Lys, Mb, BSA and RNase
A was achieved within 18 min under optimized conditions. Fur-
thermore, this method is greener and simpler than traditional
method for the use of DR instead of highly toxic and moisture
sensitive silane coupling agent.
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