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• A novel anti-icing/deicing coating
based on the amphiphilic materials.

• The coating can be formed in a simple
way.

• The coating shows excellent sunlight-
responsive anti-icing/deicing perfor-
mance in outdoor.
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A B S T R A C T

Ice accretion on airplane surfaces, power lines, or wind turbines can cause operational difficulties and disastrous
events. Great efforts have been made to develop environmentally-friendly anti-icing or deicing surfaces over the
last several decades, but a high-efficient, robust, and energy-saving surface for both anti-icing and deicing still
remains a challenge. Herein, a sunlight-responsive and robust anti-icing/deicing coating is designed by in-
tegrating photothermogenic nanocarbon fibers with an amphiphilic material, which is based on hydrophobic
polydimethylsiloxane (PDMS) and hydrophilic polyvinylpyrrolidone (PVP) segments. The resultant coating re-
presents an excellent and energy-saving anti-icing/deicing performance: a 34-fold increase of freezing delay time
compared with control steel and ~18 KPa of ice adhesion strength enabling easy removal by a natural wind
action, attributable to the intrinsic material properties (the ability of PVP to depress water freezing point and the
low surface energy of PDMS). Moreover, nanocarbon fibers can further reduce the ice adhesion strength and
endow the coating with a rapidly sunlight-sensitive photothermal deicing performance (up to 10 °C/min),
presenting the superiority of outdoor applications especially for high-altitude equipment and vehicles. After 30
icing-deicing cycle, simulated acid rain (pH = 0) scouring, sand dropping, and 200 abrasion cycle tests, this
coating also exhibits an extraordinary durability and robustness. This work makes a promising anti-icing and
deicing coating for a large-scale operation and practical applications in particular outdoors.
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1. Introduction

Ice accretion on the surfaces of essential infrastructures including
aircraft vehicles, wind turbines, power transmission lines, and high-
ways, poses significant economic losses and safety challenges [1–9]. For
example, ice-induced damage of transmission lines and towers in
southern China leads to ~16 billion dollars in economic loss at the year
of 2008. Another example is an air disaster, Continental Connection
Flight 3407 from Newark to Buffalo crashed mainly due to ice accre-
tion, resulting in all deaths in the airplane [10,11]. Current technolo-
gies and methods such as electrothermal deicing, hot-air deicing, and
mechanical deicing have been used to alleviate the negative impact of
ice accumulation, but they commonly suffer from low efficiency and
energy consumption [12–15]. Other effective deicing methods based on
chemical fluids and salts, which can depress the water freezing points
but are harmful to environment as well as corrosive to metal [16].

Recently, passive anti-icing/ice-phobic surfaces to prevent ice for-
mation or easily remove ice accretion represent an area of great in-
terest, due to their significantly environmentally-friendly, energy-
saving and safety properties [7,14,17–31]. For example, super-
hydrophobic surfaces based on the combination of micro/nanoscale
texture and hydrophobic surface chemistry, possess the super-high
water contact angles (≥150°) for effective water repellency [32–34].
Subsequently, a new class of functional materials, slippery liquid-in-
fused porous surfaces (SLIPS) have been developed [14,26–28,35]. A
textured solid is infiltrated by the lubricant to form a smooth liquid
overlayer, which can significantly decrease ice adhesion strength. Al-
though these surfaces are all promising, a robust and high-efficient anti-
icing or deicing coating based on intrinsic material property for a large-
scale operation in practice application is still highly desired.

Amphiphilic materials possess a bifunctional nature due to the in-
corporation of hydrophobic and hydrophilic segments, and are widely

used as the antifouling and fouling-release coatings because the mate-
rials are capable of resisting fouling attachment and reducing bio-
fouling adhesion strength. But there are few reports about amphiphilic
anti-icing/deicing coatings [36–40], because they commonly exhibit a
poor performance on efficiently and long-term anti-icing or deicing
applications. In this work, we designed a novel sunlight-responsive
amphiphilic coating, presenting an excellent anti-icing/deicing perfor-
mance dependent on the intrinsic material properties: poly-
vinylpyrrolidone (PVP) possessing a high hydrophilicity to depress
water freezing point and polydimethylsiloxane (PDMS) having a low
surface energy to reduce ice adhesion strength [41,42]. Meanwhile,
both PVP and PDMS possessed a superior stability and toughness under
harsh conditions, to meet the challenge of long-term anti-icing coatings.
Moreover, photothermogenic nanocarbon fibers (NFs) integrated with
the amphiphilic coating could relieve the phase separation to further
reduce the ice adhesion strength on coating surface, as well as en-
dowing the coating with high thermogenesis efficiency only dependent
on sunlight irradiation to harvest solar energy [43–45]. The penetration
ability of sunlight would induce the ice melted at the ice-coating in-
terface, resulting in quickly and easily deicing by gravity or wind ac-
tion. This new design coating all basing on the cost-saving and tough
materials presented an outstanding durability and robustness, even
after 30 icing-deicing cycle, simulated acid rain scouring (pH = 0),
sand dropping, and 200 abrasion cycle tests, benefiting a large-scale
operation and practical applications in particular outdoors.

2. Materials and methods

2.1. Materials

Dihydroxyl-terminated polydimethylsiloxane (HO-PDMS-OH,
MW = 5600 or 26000 g mol−1) was purchased from Dow Corning.

Fig. 1. Schematic illustration for development of the sunlight-responsive and robust anti-icing/deicing coating.
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Dicyclohexylcarbodiimide (DCC), tert-butyl(chloro)dimethylsilane, 4-
(dimethylamino)pyridine (DMAP) and methylsilanetriyl triacetate
(METES) (96%) were all obtained from Heowns, Tianjin (China). N-
vinylpyrrolidone (NVP, Acros, 99% stabilized with NaOH) was purified
by distillation under reduced pressure to remove the inhibitors before
use. Dibutyltin dilaurate (DBTDL, 97.5%) was purchased from j&k,
China. 2, 2′-Azobis-(isobutyronitrile) (AIBN, Adamas) was purified by
recrystallization from methanol three times before use. NFs (50 mesh,
270 μm) was purchased from Cangzhou Zhongli New Material
Technology Co., Ltd. (China). All other reagents were used as received,
and deionized water was used for all the experiments and tests.

2.2. Preparation of anti-icing/deicing coating

The preparation process of coating was presented in Fig. 1. Briefly,
the PVP-PDMS-PVP polymer (preparation process described in
Supporting Information) [46], METES, DBTDL and HO-PDMS-OH were
dissolved in CH2Cl2 and mixed with NFs by an ultrasonic treatment for
10 min at room temperature. The obtained mixture was coated onto
carbon steel plates or glasses. The resultant coatings were allowed to
cure for 3 h at room temperature, followed by an additional 8 h in a
vacuum oven at 70 °C to completely crosslinking and evaporate sol-
vents. Four ratio coatings were prepared in this work and their mass
ratios were listed in Table 1. The thickness of the coating was 0.2 mm.
The coatings were named as PP5, PP5C5 and PP5C10. “PP” represented
the amphiphilic PVP-PDMS coatings, “C” represented nanocarbon fi-
bers, and“number” represented the mass percentages of the amphiphilic
polymers or nanocarbon fibers.

2.3. Anti-icing properties

Icing delay time (DT) was performed on a cooling stage under N2

atmosphere at a constant working temperature of −15 °C. The water
droplets (6 μL) were placed on the coating surfaces by an injector
needle tube, and tested in situ by a high speed CCD camera. The carbon
steel plates or glasses were tightly attached to the cooling stage, and a
certain time period was required for surface temperature equilibrium
(−15 °C) before testing. The DT was defined as the time taken by the
droplet contact with coating from transparency to non-transparency.
Once the water droplet began to freeze, the transparent center of the
water droplet vanished immediately due to the different reflectivity
between water and ice. The room temperature was 20 ± 2 °C and the
relative humidity was 50 ± 5% controlled by a humidifier.

2.4. Energy-saving deicing properties

The ice adhesion strength was measured by the method as described
in previous literature [30,47]. The shear strength that was required to
remove ice from the coating was considered as ice adhesion strength.
Briefly: bottomless cuvettes were placed onto the coating surfaces and
were filled with 450 μL water. The contact area on coating of each
column was ~78.5 mm2. To decrease the environment humidity, an
organic glass box purged with N2 was used to cover the cooling stage
and the stage maintained at −15 °C for 4 h. A force transducer (Imada
ZP-500 N, Japan) was mounted on a motion stage which moved for-
ward at a rate of 0.5 mm/s to the cuvettes. The maximum force was

recorded to calculate the ice adhesion strength by dividing the contact
area between ice and coating surface. We obtained these average values
and standard deviation from four parallel samples.

The sunlight-responsive deicing properties of coatings were tested
by recording the melting time of ice on the surface with increasing
temperatures. A glaze ice was prepared by spraying water micro-dro-
plets (mimic freezing rain) onto the as-prepared samples at subzero
temperatures, i.e. <−10 °C and RH ≈ 80%. In order to mimic the
formation of glaze, all samples were further frozen under −20 °C and
RH ≈ 70% conditions. Sunlight-responsive deicing tests were in-
vestigated in a<−5 °C and RH ≈ 70% environment, where the as-
prepared samples were exposed to a sunlamp light (150 W) commonly
used as a solar simulator source. A MT4 MAX infrared thermometer
from Fluke Co., USA was used to measure the temperature. The coating
surface temperatures were recorded and collected by an Infrared
Radiation (IR) camera. The distances between the sunlamp and coating
surfaces were 10, 15 and 20 cm, respectively.

2.5. Characterizations

FTIR spectra were recorded on a Bruker Tensor spectrometer
(Bruker Optics, Germany) using attenuated total reflectance (ATR)
mode from 4000 to 600 cm−1 with a resolution of 4 cm−1 and scanning
times of 32. The surface morphology was examined by field emission
scanning electron microscope (FE-SEM) (JSM7610F, Hitachi Ltd.
Japan) and tapping mode atomic force microscopy (AFM) (CSPM5500A
of Ben Yuan Ltd., China). AFM equipped with E-type vertical engage
piezoelectric scanner and operated in a tapping mode at room tem-
perature. The scanning range was 5 mm × 5 mm. The root-mean-
square (RMS) roughness value was calculated on the obtained image.
The water contact angles were measured by the sessile-drop method
using an optical CA goniometry optical meter (Shanghai Zhongchen
Digital Technology Apparatus Co. JC2000D1) with 5 μL of water dro-
plets.

3. Results and discussion

3.1. Characterization of anti-icing/deicing coatings

Fig. 1 showed the typical fabricating procedures of the sunlight-
responsive and robust anti-icing/deicing coating. The coating was
prepared via a crosslinking process by METES, DBTDL and HO-PDMS-
OH to form a network, as well as blending amphiphilic PVP-PDMS-PVP
polymers. The coating was gradually formed by the condensation re-
action of HO-PDMS-OH and Si-OH groups, generated by the hydrolysis
of crosslinker METES in the presence of DBTDL as catalysts at 70 °C.
Meanwhile, NFs were dispersed uniformly in pre-chemical reaction
solution and embedded in the crosslinking networks.

The chemical structures of amphiphilic PVP-PDMS-PVP polymer,
the pristine PDMS, PP5, PP5C5, and PP5C10 coating were identified by
FTIR spectra in Fig. 2a. In the FTIR spectra of PVP-PDMS-PVP polymer,
an absorption peak at 1000–1150 cm−1 was assigned to asymmetric
stretching vibration of Si-O-Si. The peak at 795 cm−1 was attributed to
Si-C bending vibration (a characteristic signal of PDMS). A wide peak at
3359–3657 cm−1 was attributed the water absorption of PVP due to its
strong hydrophilicity, inducing a certain amount of water bound in the
amphiphilic copolymer. The peak at 1660 cm−1 was stretching vibra-
tion of carboxyl group eCOe in the copolymer; 1270 cm−1 and
2962 cm−1 represented e–CNe and eCH-bond stretching vibration
absorption peak, respectively [48]. In the spectra of amphiphilic coat-
ings with or without NFs (PP5, PP5C5, and PP5C10), their absorption
bands at 789 and 1083 cm−1 that were respectively assigned to Si-C
and Si-O-Si stretching vibration presented to be stronger, and 2960 and
2858 cm−1 assigned to CeH were also obviously strengthened. In ad-
dition, the band of SieOeSi groups in the range of 900–1100 cm−1

became a wider wavenumber. These results confirmed the condensation

Table 1
The compositions of anti-icing/deicing coatings.

Sample HO-PDMS-OH(g) PVP-PDMS-PVP(g) METES(g) NFs(g)

PDMS 5 0 0.1 0
PP5 5 0.25 0.1 0
PP5C5 5 0.25 0.1 0.25
PP5C10 5 0.25 0.1 0.5
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reaction between SieOH and HOePDMSeOH to form a crosslinking
polymer network, and chemical structure of amphiphilic coating was
not affected by the addition of NFs.

Next, SEM and AFM were used to study the surface topography and
roughness structure of the coatings. In Fig. S1a and b, the SEM image of
pristine PDMS coating showed a relatively smooth surface, while ob-
vious micro/nanoscale vesicles appeared on the amphiphilic coating
without NFs (PP5). This was probably due to the partial phase se-
paration of hydrophilic segments in hydrophobic PDMS matrix. The NF-
embedded PP5C5 and PP5C10 coatings presented the smoothness in
Fig. S1c and d. Moreover, Fig. 2b-e showed the three-dimensional
height images of coating surfaces using AFM, and the RMS values of
PDMS, PP5, PP5C5, and PP5C10 coatings were 3.06 nm, 15.30 nm,
3.85 nm, and 4.87 nm, respectively. PP5 presented a rougher surface
consistent with SEM images, while NF-embedded coatings showed the
significantly increased smoothness that would contribute to reduce ice
adhesion strength. Because NFs increased the hydrophobicity of coat-
ings to relieve the phase separation.

With increasing time (0–300 s), water contact angles (WCAs) of
these coatings were recorded under ambient conditions in Fig. S2. The
results showed that the pristine PDMS coating possessed a hydro-
phobicity for large WCAs. In comparison, WCA of PP5 coating pre-
sented a significant decrease from 100° to 85° due to the hydrophilic
PVP segments, while a slight decrease of WCAs on PP5C5 and PP5C10
coatings were attributable to the addition of hydrophobic NFs. More-
over, we calculated and studied surface free energies of these coatings
according to the Owens-Wendt method, and the results are presented in
Table 2 [49]. The surface energy of PP5C5 and PP5C10 coatings
showed a slight increase with time, due to hydrophilic PVP segments
beneficial to prolong the frozen time, but most values were less than 30
mN/m considered as a low surface energy.

3.2. Anti-icing performance

In this work, the anti-icing property of coatings was evaluated by
the representative test, crystallization delay of water droplets. Fig. S3
and 3 showed the water freezing process on different coatings com-
pared to control steel and glass at −15 °C. The significantly decreased
transparency of the droplet center represented the initiation of water
freezing process. On the PP5, PP10 and PP15 coatings, water freezing
initiated at 120 s, 148 s, and 154 s, respectively, all significantly longer
than the frozen time of water droplets on the carbon steel (4 s), glass
(8 s) and pristine PDMS coating (80 s), indicating that the addition of
hydrophilic PVP could efficiently delay the frozen time. Fig. 3a-b

demonstrated that PVP was able to effectively depress the water
freezing points using a DSC test. Because PVP could strongly bound a
large number of water molecules to inhibit hydrogen-bond network
formation, which is directly associated with water crystallization
[50–52]. To ensure the coating strength, PP5 was chosen to encapsulate
the photothermogenic NFs. As shown in Fig. 3c, delay in the freezing of
water drops on PP5C5 and PP5C10 coatings could achieve ~34 folds
and ~38 folds compared to blank control steel, also longer than that of
PP5 coating. These results indicated that the addition of NFs could also
improve the anti-icing performance of amphiphilic coating, probably
due to a more smoothness of NF-embedded coating surfaces.

3.3. Energy-saving deicing performance

In a subzero environment, the ice crystallization would always be
formed and growth when a certain amount of supercooled water on the
surfaces. So in this work, the ice adhesion strength was tested at−15 °C
using a self-made measurement device, which was consisted of a
cooling stage and a force transducer as depicted in Fig. 4a. As shown in
Fig. 4b, the ice adhesion strength achieved up to ~600 KPa on the
uncoated substrate, indicating the tight adhesion of ice with the carbon
steel surface. When the substrate was coated by pristine PDMS with a
low surface energy, the strength could be reduced to ~52.6 KPa, while
~43 KPa on PP5 coating, suggesting that the maintained low surface

Fig. 2. (a) FTIR spectra of amphiphilic PVP-PDMS-PVP polymer, HO-PDMS-OH polymer, METES, PDMS, PP5, PP5C5, and PP5C10 coatings. The typical three-
dimensional AFM height images of PDMS (b), PP5 (c), PP5C5 (d), and PP5C10 (e) coatings.

Table 2
Contact angles and surface energies of the coatings.

Water contact
angle (o)

CH2I2 contact
angle (o)

γsvp
(mN/m)

γsvd
(mN/m)

γsv
(mN/m)

PDMS (0) 112 70 0.00 23.44 23.44
PDMS (1) 109 68 0.05 24.28 24.33
PDMS (2) 107 66 0.10 25.27 25.37
PDMS (3) 103 65 0.44 25.29 25.73
PP5 (0) 100 60 0.56 28.03 28.59
PP5 (1) 97 58 0.93 28.80 29.73
PP5 (2) 90 57 2.63 28.24 30.87
PP5 (3) 85 56 4.33 28.01 32.34
PP5C5 (0) 102 61 0.35 27.71 28.06
PP5C5 (1) 100 59 0.51 28.67 29.18
PP5C5 (2) 97 58 0.94 28.80 29.74
PP5C5 (3) 92 57 2.03 28.58 30.61
PP5C10 (0) 103 63 0.34 26.58 26.92
PP5C10 (1) 98 63 1.06 26.41 27.47
PP5C10 (2) 95 61 1.65 26.55 28.20
PP5C10 (3) 93 59 1.97 27.49 29.46
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energy of amphiphilic coatings. Notably, the ice adhesion strength on
NF-embedded PP5C5 coating surfaces was as low as ~18 KPa, ex-
hibiting a superiority compared to many previously reported anti-icing
coatings as presented in Fig. 4d. It has been reported that ice can be
shaken off surfaces by natural wind action, gravity, or vibration if the
adhesion strength is lower than 50 KPa [53], indicating the energy-
saving deicing ability of PP5C5 coating. This result could be ascribed to
a more smooth and lower surface energy coating based on NFs and
PDMS, as demonstrated in Fig. 2d-e, minimizing the mechanical in-
terlocking between the ice and surface texture.

The prolonged cycle durability is also important to the anti-icing
coating, but difficult to some kinds of lubricating anti-icing surfaces
[17]. As shown in Fig. 4c, the ice adhesion strength of PP5C5 coating
was tested for 30 icing/deicing cycles in 40 days, and the results pre-
sented that it could maintained a stable low strength (~30 KPa) without
obvious increase during 30 cycles. It could be attributed to the tough-
ness of amphiphilic materials with NFs, and anti-icing/deicing cap-
ability of PP5C5 coating resulted from the intrinsic property of mate-
rials, instead of the artificial structure or infusing lubricants.

Sunlight is an infinite energy resource to infrastructures outdoor
especially high-altitude aircraft vehicles. Meanwhile, natural sunlight
containing the infrared light possesses high penetration capability to
enable arrival at the ice-substrate interface through heavy moisture and
thick ice layer. We designed a sunlight-sensitive coating based on
photothermogenic NFs that could efficiently harvest and convert solar
energy to heat for deicing, and NFs are cost-saving for a large-scale

operation. Fig. 5a illustrated a simple photothermal experimental setup
with a sunlamp for light illumination. Compared to other conventional
heating sources, the utilization of sunlight required a more sensitive
and effective material to light to-heat conversion. As shown in Fig. 5b-
d, the temperatures on the different coatings were increased by simu-
lated solar irradiation at ambient conditions. The coating without NFs
(PDMS and PP5) showed a negligible increase of temperature during
5 min irradiation (25 °C to 26.7 °C or 27.6 °C) at 20 cm and 15 cm
distance between sunlamp and coating surfaces. As expected, the in-
crease of temperatures on PP5C5 and PP5C10 coating surfaces were
much higher in same conditions, and surprisingly exceeded up to 9 °C
only after 1 min irradiation at 10 cm distance. It could be observed that
the temperatures of all coatings finally reached an equilibrium with the
surrounding environment temperatures. In addition, outdoor experi-
ment was also evaluated, and thermal images of the coatings under
natural sunlight were collected by an Infrared Radiation (IR) camera in
Fig. 5e and f. Under natural solar irradiation, pristine PDMS and PP5
coating surfaces achieved an equilibrium temperature at ~33 °C, while
PP5C5 and PP5C10 coating temperatures could achieve up to ~48 °C.
These results demonstrated that NF-embedded coatings could rapidly
harvest solar energy and effectively convert to heat only depended on
natural sunlight, indicating their energy-saving deicing property.

Next, photothermal deicing capability of the coatings was evaluated
in Fig. 6. An ice layer was formed on the PDMS, PP5, PP5C5, and
PP5C10 coatings to mimic ice accretion from freezing rain, as shown in
Fig. 6b1-b4. Then, icing samples were placed under the sunlamp

Fig. 3. (a) DSC melting thermograms and (b) freezing point depression of different concentrations of PVP. (c) Freezing process of water droplets on the control carbon
steel, glass, pristine PDMS and amphiphilic coatings with or without NFs at −15 °C.
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irradiation, maintained in a supercooled environment below 0 °C.
Fig. 6b5-b6 showed that the ice layer on PDMS and PP5 surfaces started
to melt on layer surfaces, while melt at the location contact with the
PP5C5 and PP5C10 coating with a much faster melting speed than

PDMS and PP5 (Fig. 6b7). The totally melting time of ice layer was
shown in Fig. 6c. PP5C5 (320 ± 28 s) and PP5C10 (318 ± 21 s)
exhibited an almost twice melting speed as fast as PDMS (620 ± 28 s)
and PP5 (595 ± 25 s). Moreover, the sunlight-responsive deicing

Fig. 4. (a) Schematic diagram of ice shear stress measurement. (b) Average ice adhesion strength on different samples. (c) Variation of ice adhesion strength on
PP5C5 coating surface during 30 icing/deicing cycles. (d) The deicing capability of the coating prepared in this work and previously reported anti-icing coatings
(Refer [14,26,47,54–69]). Color of the area represents the different types of recently reported ice-repellent surfaces.
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process of PP5C5 coating was depended on ice gravity and spent only
73 s as presented in Fig. 6d and Video S1, also consistent with the
deicing time of a bulk ice (Fig. S4).

The energy-saving deicing property contributed to the penetration
of sunlight through the ice, rapid sunlight-to-heat conversion induced
by NFs for ice melting at substrate-ice interface, as well as the low ice
adhesion strength caused by low surface energy of amphiphilic PVP-
PDMS materials, leading to the shedding of ice dependent on its own
gravity. This property is highly favorable to be applied in high-altitude

equipment or vehicles.

3.4. Robustness of coating

Robustness of anti-icing or deicing coatings is extremely critical to
infrastructures outside, which commonly suffer from a harsh environ-
ment. To evaluate the toughness and robustness of this coating, we
performed HCl solution (pH = 0) scouring test to mimic artificial acid
rain, as shown in Fig. 7a. PP5C5 coating maintained a low ice adhesion

Fig. 5. (a) Photothermal experimental setup for light energy from a sunlamp (used as the solar simulator source). The surface temperatures were measured by a non-
contact infrared thermometer. (b) (c) (d) The temperatures of sample surfaces under sunlamp irradiation (150 W) with different distances between sunlamp and
sample surface. (e) (f) IR images of PDMS, PP5, PP5C5 and PP5C10 coatings under natural sunlight irradiation.
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strength after impinging action by HCl solution jet (8 mm diameter) at
~1 m s−1 of total 1–3 L. Moreover, sand dropping test that can usually
evaluate an abrasion-resistant substrate was used in this work (Fig. 7b)
[70,71]. A large amount of sea sand (size, 100–300 mesh) fell down
from a 50 cm height to the surface of PP5C5 sample at a 45°angle. The
ice shear strength of the abraded surface presented a negligible increase
during 30 min test. The surface morphology after HCl solution scouring
and sand dropping tests also presented no obvious scratch or injury on
the PP5C5 coating, as shown in Figure S1 e and f. In addition, after 200
abrasion cycles using a sandpaper, PP5C5 could still maintained an ice
adhesion strength below 50 KPa (enabling removal by natural wind
action), as presented in Fig. S5. The excellent washout resistance, acid
tolerance, and abrasion resistance of this coating were related to the
toughly chemical crosslinking based on all stable materials.

4. Conclusions

In summary, we designed a robust coating that possessed the unique
property of effectively anti-icing and sunlight-responsive deicing. It
integrated an amphiphilic PVP-PDMS material with photothermal na-
nocarbon fiber, and its anti-icing and deicing performance was depen-
dent on intrinsic material properties: a significant freezing delay of anti-
icing property was mainly attributable to the hydrophilicity of PVP, and
the energy-saving deicing performance was attributable to a low sur-
face energy of PDMS and a rapid sunlight-to-heat conversion of NFs.
Furthermore, the results of icing/deicing cycle, simulated acid rain
scouring, sand dropping, and abrasion cycle tests were demonstrated
the excellent durability, robustness, and toughness of this coating. This
work will be expected to promote the advancement of anti-icing/dei-
cing materials in practical applications especially for outdoor

Fig. 6. (a) Schematic diagram of sunlight-responsive deicing test. (b1–b4) Photos of the ice layers and on PDMS, PP5, PP5C5, and PP5C10 coating surfaces. (b5) (b6)
Photos of ice melting started at ice surfaces for PDMS and PP5 coatings (b7) and at ice-coating interface for PP5C5 (same as PP5C10). (c) The time taken by the ice
layer melting totally under a sunlamp. (d) Sunlight-responsive deicing process dependent on ice gravity.
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