Growth of \(\alpha\)-axis oriented vanadium dioxide polycrystals on glass substrates

Yushen Zhang, Rui Wang*, Zhaozhong Qiu, Xiaohong Wu*, Yang Li

Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China

Article Info

Article history:
Received 8 April 2014
Accepted 24 May 2014
Available online 2 June 2014

Keywords:
Crystal growth
Texture
Phase transition
Sputtering

Abstract

Vanadium dioxide (VO\(_2\)) polycrystals on glass substrates were synthesized by radio frequency magnetron sputtering method. The VO\(_2\) polycrystals exhibit sharp \(\alpha\)-axis diffraction peaks, characteristics of the VO\(_2\) monoclinic phase, which can imply that highly oriented VO\(_2\) was formed. The characteristics of the electronic transition and hysteresis of the phase transition are described in terms of the morphology and grain boundary structures. The sharpness of the transition and the hysteresis upon heating and cooling are found to be strong functions of the crystal structure and microstructure (grain size and shape).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bulk VO\(_2\) undergoes a fully reversible metal to insulator transition (MIT) at a critical temperature \(T_c\) (68 °C), which was first reported by Morin in 1959 [1]. Actually, this fascinating transition is a first order phase transformation from monoclinic (space group \(P21/c, M\)) to tetragonal (space group \(P42/mmm, R\)) symmetry [2], accompanied by noteworthy reversible jumps in electrical resistance, optical transmittance and reflectance in the infrared region. These features make VO\(_2\) suitable for applications in thermo-chromic coating [3,4], ultrafast switching devices [5], sensors and micromechanical systems [6], etc.

The desired properties of VO\(_2\) thin films are high resistance, reflectance change during phase transition and a narrow hysteresis width. It has been proven that using single crystal substrates is effective to obtain VO\(_2\) thin films with a large electrical during phase transition and a narrow hysteresis width because metal-insulator domain wall propagation of highly oriented VO\(_2\) is faster. Orientation control is an interesting topic in thin film growth; highly oriented VO\(_2\) films have been obtained on sapphire and TiO\(_2\) single crystals [7–9]. It is found that the conductivity exhibits a variation of more than four orders of magnitude for the highly (100) texture of VO\(_2\) thin films and only three orders of magnitude for the highly (010) texture of sample with a hysteresis behavior upon heating and cooling through the transition [9]. However, to the best of our knowledge, the work concerning the synthesis of \(\alpha\)-axis oriented VO\(_2\) thin films on glass substrates has rarely been reported. In our previous work, we reported the high visible transmittance of preferred orientation vanadium dioxide with acicular nano-structure on glass slide substrates [4]; however, the MIT characteristics of these VO\(_2\) films are negligible. Therefore, in the present work, we report the successful preparation of \(\alpha\)-axis oriented VO\(_2\) films with the obvious MIT characteristics.

2. Experimental

VO\(_2\) thin films were deposited on glass substrates, from radio-frequency reactive sputtering technique, using a V\(_2\)O\(_5\) target of diameter of 49 mm. The distance between the substrate and the target for sputtering was 80 mm. The crystalline structures of the VO\(_2\) polycrystals were tested by X-ray diffraction (XRD) and a D/Max – rb rotating anode X-ray diffractometer with the CuK\(_\alpha\) wavelength (\(\lambda=0.15406\) nm). The surface morphology and cross-section image of VO\(_2\) thin films were respectively.
measured with CSPM 5500 scanning probe microscope system and Hitachi S-570 scanning electron microscopy.

3. Results and discussion

Fig. 1 shows the XRD spectra of the films of as-deposited and annealing. As shown in Fig. 1(a), one diffraction \((2\theta=19.96^\circ)\) peak which matches to \(V_2O_5\) phase is observed. However, as it is shown in Fig. 1(b), the patterns show peaks due to thin layers at angles of 18.36° and 37.15° which are very similar to values reported in [9,10]. Following the calculated pattern description of the monoclinic structure of \(VO_2\), these peaks can be indexed as the reflections on the (100) and (200) planes thus showing the highly oriented growth of these films. The preferential orientation along the (100) plane of the \(VO_2\) films deposited on soda–lime glass substrate is not clearly understood and has not been reported in the literature so far. Garry et al. [9] reported on \(a\)-axis textured \(VO_2\) thin films deposited on R-plane sapphire and suggested that the cause could be a stress developing on the interface between the substrate and the film. Ngom et al. [10] also studied that the crystalline orientation of \(VO_2\) thin films deposited on glass substrate, the crystalline orientation of the \(VO_2\) thin films was drastically changed because of the formation of an interface layer between the \(VO_2\) and a soda–lime glass substrate. As a result, under their experimental conditions the (011) and (020) peaks of the \(VO_2\) appeared in addition to the (100) and (200) peaks.

Fig. 2 illustrates the AFM images showing the influence of nitrogen annealing on the surface morphologies of films and the related cross-section image after annealing. As can be seen, the as-deposited film exhibits a smooth and compact surface, consistent
with the weak diffraction peak of as-deposited film. After having been annealed in nitrogen, fine particles (100 nm) are observed at the surface. The related cross-section image shows that the film has a thickness of about 400 nm with a compact structure. Combining the data with the XRD result, it is suggested that the VO₂ is grown on the glass substrate with the preferred orientation along a-axis.

Fig. 3 shows the change in electrical resistance of synthesized films as a function of temperature by using the heating and cooling cycles. For crystalline VO₂ films, transition from a semiconductor to metal phase is accompanied with the change in specific resistance by two orders of magnitude. The hysteresis loop width of VO₂ thin films is 8°C. These results have the same magnitude as VO₂ grown on a TiO₂ single crystal. They are also close to VO₂ grown on sapphire substrate because the VO₂ thin films are highly preferentially a-axis oriented and the crystallinity has been improved.

The MIT temperatures at heating and cooling were 58 and 50°C, respectively. Transition parameters were defined by the method described in the paper [11]. It is necessary to notice that these MIT temperatures are much less than those mentioned in papers devoted to undoped VO₂ films (typical values of Tᵣ is 68°C) [11]. This peculiarities are not related with doping the films during deposition or/and annealing [12,13]. Tᵣ decrease can be related with small sizes of crystallites. It was reported in [14] that for VO₂ films with the crystallite size 12–18 nm the MIT temperature is ~55°C. For our films, the values of average grain size and Tᵣ are very similar to values reported in [14]. Decrease in mechanical stresses in a film, due to low temperatures of formation, also promotes reduction of Tᵣ [4].

4. Conclusions

VO₂ polycrystals were deposited on soda–lime glass substrates by using RF-magnetron sputtering technique in which the control of post-deposition parameters enhances the quality of the films’ structure. XRD data suggest that the VO₂ thin films exhibited a highly (100) texture. However, it was found that a recrystallization process took place after annealing, which led to a preferential growth along the a-axis of the monoclinic VO₂. The sharpness and the hysteresis width, ΔT, of T-dependent insulator-to-metal hysteretic phase transition were our most immediate and relevant indicators of the quality of the deposited a-axis oriented VO₂ on glass substrate.

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of the People’s Republic of China (No. 2010DFR10720) and National Natural Science Foundation of China (No. 11374080)