Amperometric determination of H₂O₂ at nano-TiO₂/DNA/thionin nanocomposite modified electrode

Po-Hsun Lo, S. Ashok Kumar, Shen-Ming Chen*

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC

A R T I C L E I N F O

Article history:
Received 4 May 2008
Received in revised form 10 June 2008
Accepted 2 July 2008
Available online 12 July 2008

Keywords:
DNA modified electrode
Hydrogen peroxide detection
Nanostructured TiO₂
Electrocatalysis
Biosensors

A B S T R A C T

We report electrochemical preparation and characterization of a new biosensor made of nanostructured titanium dioxide (nano-TiO₂) particles and deoxyribonucleic acid (DNA). Thionin (TN) redox mediator was electrochemically deposited onto DNA/nano-TiO₂ modified glassy carbon electrode (GCE). The X-ray diffraction analysis, atomic force microscope (AFM) and scanning electron microscope (SEM) were used for surface analysis of TN/DNA/nano-TiO₂/GCE biosensor. The biosensor exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H₂O₂) and oxygen (O₂). The biosensor shows excellent analytical performance for amperometric determination of H₂O₂ at reduced overpotential (−0.2 V). The detection limit and linear calibration range were found to be 0.05 mM (S/N = 3) and 0.05–22.3 mM, respectively. In addition, determination of H₂O₂ in real samples was carried out using the new biosensor with satisfactory results. The TN/DNA/nano-TiO₂/GCE showed stable and reproducible analytical performance towards the reduction of H₂O₂. This biosensor can be used as an amperometric biosensor for the determination of H₂O₂ in real samples.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Metal oxides are emerging as important materials because of their versatile properties such as high-temperature superconductivity, ferroelectricity, ferromagnetism, piezoelectricity and semiconductivity. Recently, nanostructured TiO₂ particles preparation and their applications in photovoltaic studies, photocatalysis and environmental studies (water and air purification) have attracted much attention among the researchers [1–6]. The emerging sensor technology based on nanoparticles (NPs) and nanocomposites with chemical and biological molecules is much beneficial for direct and real applications. For example, the TiO₂–oligonucleotide nanocomposites not only retain the intrinsic photocatalytic capacity of TiO₂ and the bioactivity of the oligonucleotide DNA, but also possess the chemically and biologically unique new property of a light-inducible nucleic acid endonuclease, which could become a new tool for gene therapy [7]. Recent advances in hybrid nanotechnology involving nucleic acids are predominantly linked with sequence-specific nucleic acid interactions, and are oriented towards cellular imaging or DNA microarray development [8–11].

Recently, the anti-17β-estradiol antibody was immobilized on polyelectrolyte polyacrylic acid-modified TiO₂ nanoparticles for water treatment [12], sonogel carbon electrode modified with nanostructured TiO₂ for catechol detection [13], a nano-TiO₂ film/nafion modified on a glassy carbon electrode (GCE) used for investigation of dopamine [14], nano-TiO₂ and hemoglobin were co-modified on pyrolytic graphite electrode to study the photoelectric effect of TiO₂ nanoparticles [15,16] and carbon electrode modified with TiO₂/metal nanoparticles for the detection of trinitrotoluene [17] have been reported.

The DNA has been used for the immobilization of protein molecules [18–22]. DNA can enhance electron transfer between electrode and heme proteins in myoglobin–DNA films [23]. Hemoglobin on DNA/poly(2,6-pyridinediamine modified electrode for detection of H₂O₂ [24], DNA/poly(p-aminobenzenesulfonic acid) bi-layer modified GCE for detection of dopamine and uric acid [25], electrochemical behavior of neomycin at DNA-modified gold electrodes are investigated [26]. An electrochemically deposited thin film of DNA is suitable platform for fabrication of biosensors [27–29].

In the present work, we report a novel nanocomposite biosensor for the detection of H₂O₂ based on thionin incorporated bi-layer of DNA/nano-TiO₂ film modified electrode. X-ray diffraction pattern, atomic force microscope (AFM) and scanning electron microscope (SEM) have been employed for surface characterizations of TN/DNA/nano-TiO₂ films modified electrode. Cyclic
voltammetry and amperometry have been used for investigation of electrochemical properties of nanocomposite modified electrode. Using amperometry, linear range and detection limit of H2O2 were explored. In addition, we report electrocatalytic reduction of oxygen (O2) using TN/DNA/nano-TiO2 coated electrode.

2. Experimental

2.1. Materials and apparatus

Deoxyribonucleic acid sodium salt (17.5 A260 units/mg), thionin dye (dye content >95%) and titanium oxosulfate TiOSO4 were purchased from Sigma–Aldrich (St. Louis, MO, USA). H2O2 (30%, w/w), potassium ferrocyanide, sulfuric acid (H2SO4, assay 95%), nitric acid (HNO3, assay 60%) and sodium hydroxide (purity 93%) were purchased from Wako pure chemicals (Osaka, Japan). Potassium nitrate, sodium acetate and sodium dihydrogen phosphate were received from E-Merck (Darmstadt, Germany) and other chemicals were of analytical grade and used without further purification. Double-distilled water was used in all experiments. Diluted H2O2 standard solutions were freshly prepared directly prior to use. The commercial antiseptic and contact lenses cleaning H2O2 solutions were purchased from a local drug store in Taipei.

Electrochemical measurements were performed by a CHI750A Electrochemical Work Station (CH Instrument Inc., USA). Glassy carbon electrode from BAS (West Lafayette, USA) and indium tin oxide-coated glass (ITO) electrodes were purchased from Merck Display Technologies, Ltd. (Darmstadt, Germany). ITO thickness and resistance were 30 ± 10 nm and 80 Ω, respectively. Size of the glass: 300 mm × 350 mm × 0.7 mm. ITO or GCE are used as working electrodes. ITO substrates were cleaned by using detergent, diluted nitric acid and then finally rinsed with distilled water. Platinum wire is used as the counter electrode. All the cell potentials were measured with respect to an Ag/AgCl [KCl (sat)] reference electrode. Amperometry measurements for H2O2 were performed on a Bi-potentiotstat Model CHI750A (TX, USA) having an analytical rotator model AFMSRK with MSRX speed control (PINE Instruments, USA). Hitachi scientific instruments (London, UK) model S-3000H scanning electron microscope was used for surface image measurements. The AFM images were recorded with a multimode scanning probe microscope system operated in tapping mode using Being Nano-Instruments CSPM–4000, Ben Yuan Ltd. (Beijing, China). Electrochemical impedance measurements were performed using impedance measurement unit, IM6EX-ZAHNER, Messsysteme (Kroanch, Germany). All experiments were carried out at room temperature.

2.2. Electrochemical synthesis of TiO2

Electrochemical synthesis of TiO2 nanoparticles were carried out onto ITO electrode from the bath solution containing 0.02 M TiOSO4, 0.03 M H2O2, 0.05 M HNO3 and 0.05–0.25 M KNO3 (pH 1.4). The deposition was performed at room temperature (25 ± 2 °C) under potentiostatic conditions (−2.0 V vs. Ag/AgCl). This led to the formation of a white colored gel film on the electrode surface. Each deposition has been conducted for 30 min. For the preparation of multiple TiO2 layers electrosynthesis was repeated three or four times, with drying steps at 150 ± 2 °C in between, after which the final annealing step takes place at 400 °C for 1 h to obtain crystalline TiO2 film. The substrates were weighed prior to coating and after annealing to determine the amount of deposited TiO2. Nearly 20% mass reduction was observed after heat-treatment at 400 °C for 1 h, due to water elimination from the film [30]. Thereafter, crystalline TiO2 particles were scratched from the ITO surface and collected in 10 mL brown colored vial and later used for modification of GCE.

Cathodic electro-deposition of TiO2 film from TiOSO4 + H2O2 + HNO3 + KNO3 (pH 1.4) solutions involves the indirect deposition of a gel of hydrous titanium oxo-hydrides (Eq. (3)), resulting from the reaction of titanium peroxy-sulfate Eq. (2) with hydroxide ions produced by nitrate electrochemical reduction [30–32].

\[
\begin{align*}
\text{NO}_3^- + \text{H}_2\text{O} + 2\text{e}^- & \rightarrow \text{NO}_2^- + 2\text{OH}^- \\
\text{TiOSO}_4 + \text{H}_2\text{O}_2 & \rightarrow \text{Ti}_2\text{O}_2\text{SO}_4 + \text{H}_2\text{O} \\
\text{Ti}_2\text{O}_2\text{SO}_4 + 2\text{OH}^- + (x+1)\text{H}_2\text{O} & \rightarrow \text{TiO}_2\text{OH}_2\times\text{H}_2\text{O}_2 + \text{SO}_4^{2-}
\end{align*}
\]

Annealing of the gel at 400 °C for an hour, results in the formation of crystalline TiO2.

\[
\text{TiO}_2\text{OH}_2\times\text{H}_2\text{O} \rightarrow \text{TiO}_2 + (x+1)\text{H}_2\text{O}.
\]

2.3. Preparation of modified electrodes

2.5 mg of synthesized TiO2 NPs was added into 5 mL double-distilled water and then ultrasonicated for 10 min to create a suspension with a concentration of 0.5 mg mL−1. After being diluted five times, the mixture of 10 µL TiO2 NPs suspension was spread evenly onto the surface of the well cleaned GCE which was dried for 6 h in the absence of light. Finally, the modified electrode was thoroughly rinsed with double-distilled water. The deposition of DNA layer was carried out under constant potential of +1.5 V for 30 min in 0.1 mg mL−1 DNA solution [25,33]. This electrode was described as DNA/nano-TiO2/GCE. For comparison, the DNA deposition was made on a bare GCE to prepare a DNA modified GCE, denoted as DNA/GCE.

Consequently, DNA/nano-TiO2/GCE electrode was cycled in 0.1 M phosphate buffer solution (PBS) containing 1 × 10−5 M thionin (between −0.45 and 0.2 V) for 20 cycles. Afterwards, the electrode was thoroughly rinsed with double-distilled water and then dried at 4 °C for an hour in the absences of light. When not in use, the electrode was stored in aqueous solution of 0.1 M PBS (pH 7.0) at 4 °C. It was named as TN/DNA/nano-TiO2/GCE and then used for further studies. For comparison, TN/nano-TiO2/GCE, TN/DNA/GCE and TN/GCE coated electrodes were prepared and used for further investigation.

3. Results and discussions

3.1. Electrochemical deposition of TN

Fig. 1 shows the consecutive cyclic voltammograms (CVs) of TN adsorption onto DNA/nano-TiO2 bi-layer modified electrode in pH 7.0 PBS containing 1 × 10−5 M TN. The CVs of the electrochemical deposition of TN film onto a DNA/nano-TiO2/GCE was characterized by the TN redox couple in the scanning potential region between 0.0 and −0.4 V. The continuous increase in anodic and cathodic peak currents of the TN redox couple indicated the surface deposition of TN molecules (Fig. 1). After the 20th cycle, TN adsorption reached saturation. According to the literature reports, DNA is negatively charged [24–26] which could be firmly attached onto biocompatible nano-TiO2 layer [7]. The irreversible doping of TN occurs onto DNA/nano-TiO2 layer due to the interaction between negatively charged DNA and the positively charged TN from its solution (pKs 7.8) [34]. In this experiment, during the electrochemical deposition process, TN
monomers were adsorbed (not polymerized) onto DNA/nano-TiO$_2$ bi-layer.

3.2. Surface characterizations

Fig. 2 shows the SEM and AFM images of nano-TiO$_2$ (a and d), DNA/nano-TiO$_2$ (b and e) and TN/DNA/nano-TiO$_2$ (c and f) coated electrodes. From AFM image analyzer the size of the TiO$_2$ particles was found to be 40 ± 20 nm (a and d). Topography of DNA/nano-TiO$_2$ bi-layer films confirmed that nanocomposite evenly covered the electrode surface, as seen in Fig. 2(b and e). The TN/DNA/nano-TiO$_2$ film layer surface is highly porous and almost uniformly covered the electrode surface (c and f). The average surface roughnesses of nano-TiO$_2$, DNA/nano-TiO$_2$ and TN/DNA/nano-TiO$_2$ film electrodes are 1.6, 4.4 and 1.7 nm, respectively. Fig. 3 shows the X-ray diffraction images of TiO$_2$ particles. The experimental spacing were compared with those reported for rutile (1 1 0) (2θ of 27.45°) and anatase (1 0 1) (2θ of 25.24°) to identify the particle structure [32]. XRD results revealed that synthesized particles are mainly composed of anatase.

Electrochemical impedance studies: A Nyquist diagram of electrochemical impedance spectrum is an effective way to measure the
electron-transfer resistance. Fig. 4 shows Nyquist plots of bare GCE, nano-TiO2/GCE, DNA/nano-TiO2/GCE and TN/DNA/nano-TiO2/GCE in the presence of 1 mM [Fe(CN)]3−/4− probe in pH 7.0 PBS. As shown in Fig. 4 each of the impedance spectra includes a semicircle part and a linear line part, corresponding to the electron-transfer process and the diffusion process, respectively. The diameter of the semicircle represents the electron-transfer resistance (\(R_{\text{et}}\)) at the electrode surface. As shown in Fig. 4, curve (a) is a Nyquist plot of a bare GCE in 1 mM [Fe(CN)]3−/4−. A very small semicircle domain (\(R_{\text{et}} = 100\Omega\)) was found, which implied a very low electron-transfer resistance to the redox probe. After a modification with nano-TiO2 layer, the electron-transfer resistance reached a higher value (curve b, \(R_{\text{et}} = 700\Omega\)). Further modification of DNA with nano-TiO2 film modified electrode reached a higher value of electron-transfer resistance (curve c, \(R_{\text{et}} = 1410\Omega\)). Electron-transfer resistance (curve d, \(R_{\text{et}} = 810\Omega\)) of TN/DNA/nano-TiO2/GCE decreased dramatically, which indicated that TN adsorption on bilayer facilitates the electron transfer of the electrochemical probe on the bilayer modified electrode. The increase of electron-transfer kinetics on the electrode surface originates from the TN monolayer. The high conductivity of TN/DNA/nano-TiO2/GCE nanocomposite film increases the electrical properties of the redox processes and also provides a large surface area available for TN intercalation.

3.3. Electrochemical properties

Fig. 5 shows the CVs of the TN/DNA/nano-TiO2/GCE in 0.1 M PBS (pH 7.0) at different scan rates. One reversible redox couple was observed at \(E^0 = -0.19\) V vs. Ag/AgCl. Also, the electrochemical responses of the TN/DNA/nano-TiO2/GCE are anticipated for a surface-confined redox couple, because the peak currents were directly proportional to the scan rate up to 200 mV s\(^{-1}\) (Fig. 5), as predicted for a surface-confined electrochemical process [35]. The ratio of cathodic to anodic peak currents at various scan rates was almost constant. The peak-to-peak potential separation (\(\Delta E_p = E_{pa} - E_{pc}\)) is about 30 mV for TN redox peaks at sweep rates below 100 mV s\(^{-1}\), suggesting facile charge transfer kinetics over this range of sweep rate. The surface coverage concentration \(\Gamma\) of TN was evaluated from the following equation:

\[
\Gamma = \frac{Q}{nF} \tag{5}
\]

where \(A = 0.0707\) cm\(^2\) is the area of the GCE, \(n = 2\) the number of electrons per reactant molecule, \(Q\) the charge obtained by integrating the anodic peak at low voltage scan rate (10 mV s\(^{-1}\)), and \(F\) is the Faraday constant. We assume that all of the immobilized redox centers are electroactive on the voltammetry time scale. In the present case, the calculated value of \(\Gamma\) was 4.5584 × 10\(^{-10}\) mol/cm\(^2\). The formal potential of TN redox peak was pH-dependent (Fig. S1). A plot of \(E^0\) vs. pH gives a straight line from pH 1 to 7 with a slope of −62 mV/pH which is very close to the anticipated Nernstian value of −59 mV for a two-electron–two-proton process of TN [34,36] (Scheme 1) and another straight line was obtained from pH 8 to 13 with a slope of −36 mV which is due to the two-electron–one-proton electron-transfer reaction. Similar observation was reported for TN on carbon nanotube modified electrodes [34].

3.4. Electrocatalytic mediated reduction of \(\text{H}_2\text{O}_2\)

To investigate electrocatalytic activity of TN/DNA/nano-TiO2/GCE, electrochemical catalytic reduction \(\text{H}_2\text{O}_2\) was investigated by cyclic voltammetry (Fig. 6). There was no reduction peak observed at bare GCE and nano-TiO2/GCE in the presence of \(\text{H}_2\text{O}_2\) in the potential range of 0.2 to −0.7 V, suggesting that nano-TiO2/GCE was inactive to the direct reduction of \(\text{H}_2\text{O}_2\) (curves a'). However, at TN/DNA/nano-TiO2/GCE, the reduction peak current at about −0.20 V was greatly enhanced in the presence of
H$_2$O$_2$ corresponding with the decrease of the oxidation peak current, suggesting a typical excellent electrocatalytic reduction process of H$_2$O$_2$. The reduction peak current increased with the concentration of H$_2$O$_2$ in the solutions (curve b–e). In the absence of H$_2$O$_2$ a reversible redox peak of TN was retained. The above results indicated that mediated reduction of H$_2$O$_2$ takes place at TN/DNA/nano-TiO$_2$/GCE. According to the earlier reports [34,37] and based on our experimental findings the possible electrochemical reduction mechanism of H$_2$O$_2$ at TN modified electrode was presented in Eqs. (6) and (7).

\[
\text{Thionin (oxidized form)} + 2e^- + 2H^+ \rightleftharpoons \text{Thionin (reduced form)} \quad (6)
\]

\[
\text{Thionin (reduced form)} + H_2O_2 + 2H^+ \rightarrow \text{Thionin (oxidized form)} + 2H_2O \quad (7)
\]

To ascertain the need of bi-layer films, the electrochemical depositions of TN onto bare GCE (a), nano-TiO$_2$/GCE (b) and DNA/nano-TiO$_2$/GCE (c) were carried out and the obtained results are shown in Fig. 7. From the CVs one can understand that the DNA/nano-TiO$_2$ nanocomposite modified electrode is highly suitable for adsorption of TN molecules. The magnitude of TN peak current on DNA/nano-TiO$_2$/GCE (c) was six times higher than on a bare GCE (a) and nano-TiO$_2$/GCE (b) which indicated the advantages of bi-layer modified electrode. After the modification, those three electrodes are washed thoroughly with pH 7 buffer solution and then CVs were recorded in pH 7.0 PBS. In contrast to TN/DNA/nano-TiO$_2$/GCE, redox peak currents of TN/GCE and TN/nano-TiO$_2$/GCE are continuously decreased and the redox peak disappeared after 20 cycles. This study clearly indicated that there is no strong dye adsorption on these electrodes which indicated the leaching of dye molecules from the electrode surface. Indirectly this study indicated that, bare GCE and nano-TiO$_2$ modified electrodes are not suitable for fabrication of stable amperometric sensor for the detection of H$_2$O$_2$. Nevertheless, reproducible results could not be obtained for the measurement for H$_2$O$_2$ at TN/DNA/GCE; it may due to the instability of TN/DNA film on the electrode surface.

3.5. Effect of solution pH and scan rate

The effect of pH on the response of the modified electrode was investigated in different pH solutions (1–13). This experimental result showed that the TN redox peak currents increased with the increasing pH until it reached 7.0. Thereafter, the redox peak cur-

![Scheme 1. Schematic representation of redox reaction of TN and electrocatalytic reduction of H$_2$O$_2$.](image)

![Fig. 6. Electrocatalytic reduction of H$_2$O$_2$ in pH 7.0 PBS at TN/DNA/nano-TiO$_2$/GCE.](image)

(a) 0.0 M, (b) 2.5×10^{-3} M, (c) 5×10^{-3} M, (d) 7.5×10^{-3} M, (e) 1×10^{-2} M H$_2$O$_2$ and (a') nano-TiO$_2$/GCE in 1×10^{-3} M H$_2$O$_2$.

![Fig. 7. CVs of TN deposition onto DNA/nano-TiO$_2$/GCE (c), bare GCE (b) and nano-TiO$_2$/GCE (a) from PBS (pH 7.0) containing 1×10^{-3} M TN.](image)
Table 1.
Comparison of the analytical data obtained by some modified electrodes proposed for the determination of H₂O₂.

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Modifier</th>
<th>pH</th>
<th>Eₚ(V)</th>
<th>Linear range (M)</th>
<th>Detection limit (µM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au electrode</td>
<td>HRP/DNA/cysteamine</td>
<td>6.9</td>
<td>−0.20</td>
<td>1.0 × 10⁻² to 9.7 × 10⁻¹</td>
<td>0.5</td>
<td>[18]</td>
</tr>
<tr>
<td>Au electrode</td>
<td>DNA-hemoglobin</td>
<td>5.0</td>
<td>−0.75</td>
<td>2.5 × 10⁻³ to 1.25 × 10⁻⁴</td>
<td>0.4</td>
<td>[22]</td>
</tr>
<tr>
<td>Graphite electrode</td>
<td>Multiwalled carbon nanotubes/thionine</td>
<td>7.0</td>
<td>−0.20</td>
<td>1.37 × 10⁻⁶ to 3.44 × 10⁻⁴</td>
<td>–</td>
<td>[36]</td>
</tr>
<tr>
<td>GCE</td>
<td>Thionin–multiwalled carbon nanotubes</td>
<td>7.0</td>
<td>−0.30</td>
<td>2.0 × 10⁻⁵ to 1.60 × 10⁻⁴</td>
<td>0.38</td>
<td>[37]</td>
</tr>
<tr>
<td>GCE</td>
<td>Poly(p-aminobenzene sulfonic acid)</td>
<td>7.0</td>
<td>−0.70</td>
<td>5 × 10⁻⁵ to 5.5 × 10⁻⁴</td>
<td>10</td>
<td>[38]</td>
</tr>
<tr>
<td>Screen printed carbon electrode</td>
<td>FAD/TiO₂</td>
<td>7.0</td>
<td>−0.45</td>
<td>0.15 × 10⁻⁶ to 3.0 × 10⁻³</td>
<td>0.1</td>
<td>[39]</td>
</tr>
<tr>
<td>GCE</td>
<td>TN/DNA/nano-TiO₂</td>
<td>7.0</td>
<td>−0.2</td>
<td>5 × 10⁻¹ to 2.23 × 10⁻²</td>
<td>50</td>
<td>Proposed method</td>
</tr>
</tbody>
</table>

3.7. Analysis of real samples

To investigate the actual applicability of the developed new biosensor TN/DNA/nano-TiO₂/GCE system to practical usage, the H₂O₂ concentrations of commercial antiseptic solutions and soft contact lenses cleaning solutions (−3%) were analyzed. The H₂O₂ content in commercial samples has been estimated directly with the TN/DNA/nano-TiO₂/GCE by an amperometric method, and the results are compared with an alternate standard method [40]. The amperometric current-time response recorded for the reduction of H₂O₂ in commercial samples for sequential additions of 10 µL of the as-prepared antiseptic agent with 200 times dilution to a 0.1 M PBS. Comparing with the linear calibration graph displayed by the TN/DNA/nano-TiO₂/GCE, an average H₂O₂ concentration was obtained over nine measurements with relative errors −1.993% and −2.276%, indicating good reproducibility of the electrode (Table 2).

3.8. Reproducibility and stability of the modified electrode

The reproducibility of the current response of the biosensor was examined at fixed concentration of H₂O₂ (1.5 mM) and the relative standard deviation (RSD) was 2.3 (n = 9). This RSD value is better and well comparable with the existing methods [24,36–39]. It indicated that the sensor possessed good reproducibility. In addition, catalytic current response for reduction of H₂O₂ at TN/DNA/nano-TiO₂/GCE was tested in the solution containing 1.5 mM H₂O₂ before and after continuous stirring of the buffer solution for 30 min. The response of the electrode had no significant change before and after stirring the solution, this test indicated that reproducible results could be obtained at TN/DNA/nano-TiO₂/GCE. After those experiments, the biosensor was kept in 0.1 M PBS at 4 °C in order to keep the activity of TN. We used the biosensor to detect H₂O₂ three times every day and the results showed that the catalytic current decreased only about 2.0% after a month. This study indicated that TN/DNA/nano-TiO₂/GCE has good stability and it can be used repeatedly. To ascertain the reproducibility and reliability of the fabrication procedure, seven times GCE electrode was modified with TN/DNA/nano-TiO₂ films and CVs of the biosensors were recorded in 0.1 M PBS. The RSD value of measured anodic peak currents was 2.86%. The positively charged TN (pKₐ 7.8) [34] monomers that were firmly attached onto negatively charged DNA/nano-TiO₂ bi-layer film may attribute to higher stability and good analytical performance of the new biosensor.

Table 2.
Determination of H₂O₂ in commercial samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>H₂O₂ labeled value (%)</th>
<th>Proposed method S ± RSD (%)</th>
<th>Standard method (%)</th>
<th>Relative error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2.8345 ± 1.25 (n=9)</td>
<td>2.891</td>
<td>−1.993</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.7641 ± 1.84 (n=9)</td>
<td>2.827</td>
<td>−2.276</td>
</tr>
</tbody>
</table>

a Relative standard deviation.

b Average value of three measurements.
Electrocatalysis of oxygen

Electrocatalytic reduction of O$_2$ was studied using TN/DNA/nano-TiO$_2$/GCE. Fig. 9 shows the CVs of TN/DNA/nano-TiO$_2$/GCE in 0.1 M PBS (pH 7.0) with O$_2$-saturated solution. An increase in the cathodic peak at about −0.20V is observed in the presence of O$_2$ and the increase in the cathodic peak is accompanied by a decrease of anodic peak, suggesting that TN has mediated the electrocatalytic reduction of O$_2$ (curve b). Nano-TiO$_2$/GCE (curve c) and bare GCE (curve d) did not show significant increase in peak current and failed to reduce the overpotential required for O$_2$ reduction reaction. Indeed, TN/DNA/nano-TiO$_2$/GCE reduced the overpotential about 430 mV. In nitrogen saturated solution a TN redox peak re-appeared (curve a). The mechanism of catalytic reduction of O$_2$ at TN/DNA/nano-TiO$_2$/GCE can be elucidated by the pathway suggested in Eq. (8). Electrochemical reduced form of TN on DNA/nano-TiO$_2$/GCE gets converted to oxidized form at the electrode surface followed by a fast reaction of TN$_{red}$ with O$_2$. The product of TN$_{red}$ + O$_2$ could then undergo electrochemical reduction at the potential of TN$_{oxid}$ reduction producing H$_2$O$_2$ and TN$_{red}$ again [37].

$$\text{TN}_{\text{reduced form}} + \text{O}_2 + 2\text{H}^+ \rightarrow \text{TN}_{\text{oxidized form}} + \text{H}_2\text{O}_2 \quad (8)$$

4. Conclusions

The electrochemical preparation of nano-TiO$_2$ particles and their use in the preparation of amperometric biosensor for the detection of H$_2$O$_2$ was demonstrated. The TN/DNA/nano-TiO$_2$/GCE showed excellent stability and electrocatalytic activity towards the reduction of H$_2$O$_2$ and O$_2$ in physiological condition. AFM, SEM and X-ray diffraction images revealed that nano-TiO$_2$ particles cover the electrode surface and lead to the adsorption of DNA and TN films. The electrocatalytic properties of modified electrode were studied by using cyclic voltammetry and amperometry. The TN/DNA/nano-TiO$_2$/GCE has been employed as a biosensor for determination of H$_2$O$_2$ in the range from 0.05 to 22.3 mM with a detection limit of 0.05 mM (S/N = 3). We also demonstrated the real application of our proposed method for the determination of H$_2$O$_2$ in commercially available peroxide solutions with satisfactory results.

Acknowledgements

This project work was financially supported by the Ministry of Education and the National Science Council of Taiwan, ROC.

Appendix A. Supplementary data

References

Fig. 9. Electrocatalytic reduction of O$_2$ in pH 7.0 PBS using TN/DNA/nano-TiO$_2$/GCE. (a) N$_2$-saturated solution, (b) O$_2$-saturated solution, (c) nano-TiO$_2$/GCE in O$_2$-saturated solution and (d) bare GCE in O$_2$-saturated solution.

